دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: S. Poonkuntran, Rajesh Kumar Dhanraj, Balamurugan Balusamy سری: ISBN (شابک) : 1032074000, 9781032074009 ناشر: CRC Press/Chapman & Hall سال نشر: 2022 تعداد صفحات: 274 [275] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 35 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Object Detection with Deep Learning Models: Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تشخیص اشیا با مدلهای یادگیری عمیق: اصول و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تشخیص شی با مدلهای یادگیری عمیق درباره پیشرفتهای اخیر در تشخیص و تشخیص اشیا با استفاده از روشهای یادگیری عمیق، که موفقیت زیادی در زمینه بینایی رایانه و پردازش تصویر به دست آوردهاند، بحث میکند. این یک مرور سیستماتیک و روشمند از آخرین پیشرفتها در نظریه یادگیری عمیق و کاربردهای آن در بینایی رایانه ارائه میکند و آنها را با استفاده از موضوعات کلیدی، از جمله تشخیص اشیا، تجزیه و تحلیل چهره، تشخیص اشیاء سه بعدی، و بازیابی تصویر نشان میدهد.
این کتاب ترکیبی غنی از تئوری و عمل ارائه می دهد. این برای دانشجویان، محققان و پزشکان علاقه مند به یادگیری عمیق، بینایی کامپیوتر و فراتر از آن مناسب است و همچنین می تواند به عنوان یک کتاب مرجع مورد استفاده قرار گیرد. مقایسه جامع برنامههای مختلف یادگیری عمیق به خوانندگان کمک میکند تا با درک پایهای از یادگیری ماشین و حساب دیفرانسیل و انتگرال، نظریهها را درک کنند و الهامبخش برنامههای کاربردی در سایر وظایف بینایی رایانه باشند.
ویژگیها: span>
Object Detection with Deep Learning Models discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval.
The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.
Features:
Cover Half Title Title Page Copyright Page Table of Contents Editors List of Contributors Chapter 1: Introduction:: Deep Learning and Computer Vision 1.1 Introduction to Deep Learning 1.1.1 Deep Learning 1.1.2 Machine Learning and Deep Learning 1.1.3 Types of Networks in Deep Learning 1.1.3.1 Connection Type of Networks 1.1.3.1.1 Static Feedforward Networks 1.1.3.1.2 Dynamic Feedback Neural Networks 1.1.3.2 Topology-based Neural Networks 1.1.3.2.1 Single-layer Neural Networks 1.1.3.2.2 Multilayer Neural Networks 1.1.3.2.3 Recurrent Neural Networks 1.1.3.3 Learning Methods 1.1.3.3.1 Supervised Learning 1.1.3.3.2 Unsupervised Learning 1.1.3.3.3 Reinforcement Learning 1.2 Convolutional Neural Networks 1.2.1 Description of Five Layers of General CNN Architecture 1.2.1.1 Input Layer 1.2.1.2 Convolutional Layer 1.2.1.3 Pooling Layer 1.2.1.4 Fully Connected Layers 1.2.1.5 Output Layer 1.2.2 Types of Architecture in CNN [ 9 ] 1.2.2.1 LeNet-5 1.2.2.2 AlexNet 1.2.2.3 ZFNet 1.2.2.4 GoogLeNet/Inception 1.2.2.5 VGGNet 1.2.2.6 ResNet 1.2.3 Applications of Deep Learning 1.3 Image Classification, Object Detection and Face Recognition 1.3.1 Dataset Creation 1.3.2 Data Preprocessing 1.3.3 Image Classification 1.3.4 Object Detection 1.3.5 Face Recognition References Chapter 2: Object Detection Frameworks and Services in Computer Vision 2.1 Neural Networks (NNs) and Deep Neural Networks (DNNs) 2.1.1 Neural Networks 2.1.2 Single-Layer Perceptron (SLP) 2.1.3 Multilayer Perceptron (MLP) 2.2 Activation Functions 2.2.1 Identity Function 2.2.2 Sigmoid Function 2.2.3 Softmax Function 2.2.4 Tanh Function 2.2.5 ReLU (Rectified Linear Unit) Function 2.3 Loss Functions 2.4 Convolutional Neural Networks 2.4.1 CNN Architecture and its Components 2.5 Image Classification Using CNN 2.5.1 LeNet-5 2.5.2 AlexNet 2.5.3 VGGNet 2.5.4 Inception and GoogLeNet 2.5.4.1 Inception Module 2.5.5 ResNet 2.5.5.1 Residual Block 2.6 Transfer Learning 2.6.1 Need for Transfer Learning 2.6.2 Transfer Learning Approaches 2.6.2.1 Pre-trained Network as a Classifier 2.6.2.2 Pre-trained Network as a Feature Extractor 2.6.2.3 Fine Tuning 2.7 Object Detection 2.7.1 Object Localization 2.7.1.1 Sliding Window Detection 2.7.1.2 Bounding Box Prediction 2.7.2 Components of Object Detection Frameworks 2.8 Region-Based Convolutional Neural Networks (R-CNNs) 2.8.1 R-CNN 2.8.2 Fast R-CNN 2.8.2.1 Components of Fast R-CNN 2.8.3 Faster R-CNN 2.8.4 YOLO Algorithm 2.8.5 YOLOv1 Object Detection Model 2.8.6 YOLO9000 Object Detection Model 2.8.7 YOLOv3 Object Detection Model 2.9 Computer Vision Application Areas References Chapter 3: Real-Time Tracing and Alerting System for Vehicles and Children to Ensure Safety and Security, Using LabVIEW 3.1 Introduction 3.2 Scope of the Chapter 3.3 System Requirements 3.3.1 Hardware Requirements 3.3.2 Software Requirements 3.4 Real-Time Tracing and Alerting System Environment 3.4.1 Image Acquisitions Module 3.4.2 Object Identification Module 3.5 System Architecture 3.6 Outline of Vehicle-tracking Processing 3.7 Overview of RFID 3.7.1 Implementation of RFID 3.8 Module 3.8.1 Vehicle Tracking Using LabVIEW 3.8.2 Student Tracking Using RFID 3.8.3 Alerting System 3.9 Conclusion References Chapter 4: Mobile Application-based Assistive System for Visually Impaired People: A Hassle-Free Shopping Support System 4.1 Introduction 4.1.1 Cataracts 4.1.2 Age-Related Macular Degeneration (AMD) 4.1.3 Diabetic Retinopathy 4.1.4 Glaucoma 4.2 Related Works 4.2.1 Item Identification 4.2.2 Barcodes 4.3 Proposed System 4.3.1 Barcode Capture 4.3.2 Barcode Detection 4.3.3 Barcode Pre-processing 4.3.4 Scan Distance 4.3.5 User Feedback System 4.3.6 Decoding of Barcode Image 4.3.7 Fetching Product Specification 4.3.8 Text-to-Speech Using Google TTS 4.4 Experimental Result and Discussion 4.4.1 Dataset Collection 4.5 Conclusion and Future Work References Chapter 5: Traffic Density and On-road Moving Object Detection Management, Using Video Processing 5.1 Introduction 5.1.1 Problem Definition 5.2 Literature Survey 5.3 Technical Concepts 5.3.1 Image Processing 5.3.2 Architecture Design 5.3.3 Background Registration 5.3.4 Color Identification 5.3.5 Data Flow Diagram for Detection Modules 5.3.6 Data Flow Diagram for Tracking Modules 5.3.7 Data Flow Diagram for Counting Modules 5.4 Proposed Methodology 5.4.1 Proposed Method Steps 5.5 Simulation and Result 5.6 Conclusion References Chapter 6: Automated Vehicle Number Plate Recognition System, Using Convolution Long Short-Term Memory Technique 6.1 Introduction 6.2 Literature Review 6.2.1 Related Work Related to License Plate Recognition Technology 6.2.2 Deep Learning-Based Work for Recognizing License Plates 6.3 Methodology 6.3.1 Convolutional LSTM 6.4 Experiments 6.5 Results 6.5.1 Parameters for Evaluation 6.5.2 Evaluation Metrics 6.5.3 Comparison Evaluation Fusion Model With Baseline Models 6.6 Conclusion References Chapter 7: Deep Learning-Based Indian Vehicle Number Plate Detection and Recognition 7.1 Introduction 7.2 Literature Survey 7.3 Proposed System 7.4 Experimentation & Results References Chapter 8: Smart Diabetes System Using CNN in Health Data Analytics 8.1 Introduction 8.1.1 What Is Big Data? 8.1.2 Analytics in Big Data 8.1.3 Healthcare – Big Data Analytics 8.1.3.1 Challenges 8.1.3.2 Developing Complexity of Healthcare Information 8.1.4 Big Data Framework 8.1.4.1 Cloud and Big Data 8.1.4.2 Open Source Arrangements for Big Data Information in Healthcare 8.2 Problem Identification 8.3 Proposed Solution 8.3.1 Smart Diabetes System 8.3.2 Objectives 8.3.2.1 Personalized Information Investigation Demonstration for Smart Diabetes 8.4 5G Smart Diabetes Model – Technologies 8.4.1 Fifth Generation Mobile Networks 8.4.2 Machine Learning Techniques 8.4.2.1 AI Applications in Healthcare 8.4.2.1.1 Discrete occasion simulation 8.4.2.1.2 Free-text doctor notes 8.4.3 How Convolution Neural Network Applies Here 8.4.4 Medical Big Data 8.4.4.1 Diabetes 1.0 8.4.4.2 Diabetes 2.0 8.4.5 Social Networking 8.4.6 Smart Clothing 8.5 Smart Diabetes Architecture 8.5.1 Smart Diabetes Design 8.5.2 Detection 8.5.3 Personalized Determination 8.5.4 Information Sharing 8.5.4.1 Social Space 8.5.4.2 Information Space 8.5.4.3 How Can Social and Information Space Be Combined? 8.5.5 System Sensor Architecture 8.5.5.1 How Does the Continuous Glucose Monitor (CGM) Work? 8.5.5.2 Phenomenal Highlights of a CGM 8.5.5.3 Unprecedented Necessities Required to Utilize a CGM 8.5.5.4 Who Can Utilize a CGM? 8.5.5.5 What Are the Benefits of a CGM? 8.5.5.6 What Are the Constraints of a CGM? 8.5.5.7 What Could Put Everything in Order for an Artificial Pancreas? 8.6 5G Smart Diabetes System Test Bed & Result 8.6.1 Information Collection from a Healing Community 8.6.2 Diet 8.6.3 Exercise 8.6.4 Sharing Information 8.6.5 The Test Bed of Machine Learning Calculations 8.6.6 Results 8.7 Conclusion References Chapter 9: Independent Automobile Intelligent Motion Controller and Redirection, Using a Deep Learning System 9.1 Introduction 9.2 Related Work 9.3 Existing System 9.4 Proposed Method: Two-tier Approach for AI Transportation Traffic Flow Administration 9.4.1 Optimization of Traffic Lights 9.5 Smart Redirected Path Use 9.6 Discussions and Results 9.6.1 First Layer 9.6.2 Second Layer 9.6.3 Third Layer 9.6.4 Fourth Layer 9.6.5 Fifth Layer 9.7 Conclusion 9.8 Acknowledgment References Chapter 10: Deep Learning Solutions for Pest Detection 10.1 Introduction 10.1.1 Object Detection 10.1.2 Deep Object Detection 10.1.2.1 Types of Deep Object Detection 10.1.3 Challenges in Object Detection 10.2 Advances in Agriculture 10.2.1 Smart Farming 10.2.2 Deep Learning in Agriculture 10.2.3 Automatic Pest Detection 10.2.4 Challenges in Automatic Pest Detection 10.2.4.1 Extrinsic Factors 10.2.4.2 Intrinsic Factors 10.2.4.3 Big Data Availability for Deep Detection 10.3 Novel Smart Intelligent System for Paddy Pest Detection 10.3.1 Related Work 10.3.2 Training Phase 10.3.2.1 Dataset Description 10.3.2.2 Classes Used in the Proposed Method 10.3.3 EfficientDet 10.3.4 Server Framework 10.3.5 Mobile Service Framework 10.3.6 Performance Metrics for Evaluation 10.3.6.1 Precision and Recall 10.3.6.2 Average Precision (AP) 10.3.6.3 Mean average Precision (mAP) 10.3.6.4 Precision-Recall Curve 10.3.6.5 Inference Speed 10.3.6.6 Service Time for User 10.4 Conclusion References Chapter 11: Deep Learning Solutions for Pest Identification in Agriculture 11.1 Introduction 11.2 Existing Literature 11.2.1 Disease Detection 11.2.2 Land Cover Identification 11.2.3 Classification of Plants 11.2.4 Precision Livestock Farming 11.2.5 Pest Recognition 11.3 Background Details 11.3.1 Deep Learning 11.3.2 Motivation of this Study 11.3.3 Contribution 11.3.3.1 Similarity of Different Types of Plant Disease 11.3.3.2 Steps Involved in Plant Disease Detection 11.3.3.3 Deep Learning in Tomato Diseases 11.3.3.4 Deep Learning in Potato Diseases 11.3.3.5 Deep Learning in Apple Diseases 11.3.3.6 Deep Learning Approaches for High Spectral Images in Agricultural Field 11.4 Conclusion References Chapter 12: A Complete Framework for LULC Classification of Madurai Remote Sensing Images with Deep Learning-based Fusion Technique 12.1 Introduction 12.2 Related Work 12.2.1 Image Fusion 12.2.2 Process of Feature Extraction 12.2.3 Feature Selection 12.2.4 Classification of Images 12.3 Problem Statement 12.4 Proposed Work 12.4.1 System Overview 12.4.2 Image Fusion 12.4.3 Feature Extraction 12.4.3.1 Deep Features 12.4.3.1.1 Convolutional Layer 12.4.3.1.2 Pooling Layer 12.4.3.2 Gray Level Co-occurrence Matrix (GLCM) 12.4.3.3 Hu Invariant Moments 12.4.3.4 Color Moments 12.4.4 Feature Selection 12.4.4.1 Ranking Procedure 12.4.4.2 Reconstruction Error (RE) Measure 12.4.5 Image Classification 12.4.5.1 Classification Based on BP Algorithm 12.4.5.2 Classification Based on k-nearest Neighbor 12.4.5.3 Classification Based on Naive Bayes 12.4.5.4 Combined Classifier System (CCS) 12.5 Experimental Results and Discussion 12.5.1 Description of Dataset 12.5.2 Results of the Proposed System 12.5.2.1 Evaluation for Image Fusion 12.5.2.2 Evaluation for Classification 12.5.3 Discussions about the Proposed System 12.6 Conclusion References Chapter 13: Human Behavioral Identifiers: A Detailed Discussion 13.1 Introduction to Biometric Technology 13.2 Historical Outline 13.3 The Basic Characteristics 13.3.1 Collectability 13.3.2 Circumvention 13.3.3 Distinctiveness 13.4 Biometric Types 13.4.1 Fingerprints 13.4.2 Photo and Video 13.4.3 Speech 13.4.4 Signature 13.4.5 DNA 13.5 Behavioral Identifiers 13.5.1 Inputting Forms 13.5.2 Physical Movements 13.5.3 Navigation Forms 13.5.4 Engagement Patterns 13.6 Applications 13.6.1 Financial Sector 13.6.2 Security 13.6.3 Mobile Application Domain 13.6.4 Justice, Law and Enforcement Applications 13.6.5 Public Services Applications 13.6.5.1 Healthcare 13.6.5.2 Border Control and Airports 13.6.6 Eye Movement Tracking Applications 13.6.6.1 Aviation 13.6.6.2 Automotive Industry 13.6.6.3 Screen Navigation 13.7 The Rise of Static Biometric Authentication through Physical Characteristics 13.8 Behavioral Biometrics in Today’s Digital World 13.9 Analyzing the Patterns in Human Activity 13.9.1 Physical Movements 13.9.2 Voice Biometrics 13.9.3 Device-based Gestures 13.10 Emerging Technologies in Behavioral Biometrics 13.10.1 Human Behavioral Patterns 13.10.2 Sensors 13.11 Machine Learning/Deep Learning 13.11.1 How it Works 13.12 Behavioral Biometrics Examples 13.12.1 Compromised Credentials 13.12.2 Account Details/Password Sharing 13.12.3 User Substitution 13.12.4 Remote Access Trojans 13.12.5 Insider Threats 13.12.6 USB Rubber Ducky Attacks 13.12.7 Phishing Attacks 13.12.8 Uncertain Attribution 13.12.9 User/Client Carelessness 13.12.10 Identity Fraud 13.12.11 License Mismanagement 13.13 Merits and Demerits 13.14 Future of Behavioral Biometrics References Index