دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Dr. rer. nat. Willi Törnig (auth.)
سری:
ISBN (شابک) : 9783642965234, 9783642965227
ناشر: Springer-Verlag Berlin Heidelberg
سال نشر: 1979
تعداد صفحات: 363
زبان: German
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب ریاضیات عددی برای مهندسان و فیزیکدانان: جلد 2: مسائل ارزش ویژه و روش های عددی تجزیه و تحلیل: کاربردهای ریاضیات، کاربرد ریاضیات/روش های محاسباتی مهندسی، فیزیک نظری، ریاضی و محاسباتی، مباحث فیزیولوژیکی، سلولی و پزشکی
در صورت تبدیل فایل کتاب Numerische Mathematik für Ingenieure und Physiker: Band 2: Eigenwertprobleme und numerische Methoden der Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات عددی برای مهندسان و فیزیکدانان: جلد 2: مسائل ارزش ویژه و روش های عددی تجزیه و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جلد دوم \"ریاضیات عددی برای مهندسان و فیزیکدانان\" مانند جلد اول برای آشنایی شما با گزیده ای از روش های عددی مهم در نظر گرفته شده است. فقط فرآیندهایی که برای کاربردهای فنی و فیزیکی مهم هستند در نظر گرفته می شوند. بررسی های نظری مرتبط فقط تا آنجا که برای درک لازم است انجام می شود. با این وجود، امیدوارم این کتاب که مانند جلد اول منتشر شده، یک اثر آموزشی و مرجع است، برای بسیاری از ریاضیدانان علاقه مند به کاربردها نیز جذاب باشد. این جلد شامل چهار قسمت است که با جلد 1 شماره گذاری شده اند. در بخش IV روش هایی برای تخمین عددی و محاسبه مقادیر ویژه و بردارهای ویژه ماتریس ها شرح داده شده است. مانند سایر بخشهای کتاب، محدود کردن تنها به چند روش اساسی و اثبات شده ضروری است. علاوه بر روش های Jacobi و LR، فصل 10 همچنین شامل روش هایی برای محاسبه مقادیر ویژه یک ماتریس Hessenberg است. بیش از همه با توجه به محاسبه مقادیر ویژه ماتریس های بزرگ، روشی برای کاهش یک ماتریس به فرم هسنبرگ نیز توضیح داده شده است. بخش V شامل روش هایی برای درونیابی، تقریب و ادغام عددی توابع است. درون یابی و تقریب کلاسیک توسط چند جمله ای ها به طور خلاصه ارائه شده است، زیرا اهمیت آن برای کاربردهای فنی و فیزیکی چندان گسترده نیست. فصل 12 به بررسی اصول درونیابی اسپلاین برای اسپلاین های خطی و مکعبی می پردازد. فصل 13 شامل روش های نسبتاً دقیق تربیع و مکعب عددی با بحث مختصری در مورد محاسبه انتگرال های نامناسب است.
Der vorliegende zweite Band "Numerische Mathematik für Ingenieure und Physiker" soll wie der erste mit einer Auswahl von wichtigen numerischen Verfahren vertraut machen. Dabei werden nur solche Verfahren betrachtet, die für technische und phy sikalische Anwendungen von Bedeutung sind. Die zugehörigen theoretischen Unter suchungen werden nur so weit geführt, wie es für das Verständnis notwendig ist. Trotzdem hoffe ich, daß das Buch, das ebenso wie der bereits erschienene erste Band ein Lehr- und Nachschlagewerk sein will, auch manchen an den Anwendungen interessierten Mathematiker anspricht. Der Band enthält in fortlaufender Numerierung mit Band 1 vier Teile. In Teil IV wer den einige Verfahren zur numerischen Abschätzung und Berechnung der Eigenwerte und Eigenvektoren von Matrizen beschrieben. Dabei ist, wie auch in anderen Teilen des Buches, eine Beschränkung auf nur wenige grundlegende und bewährte Methoden notwendig. Das Kapitel 10 enthält neben dem Jacobi- und dem LR-Verfahren auch Methoden zur Berechnung der Eigenwerte einer Hessenberg-Matrix. Vor allem im Hinblick auf die Berechnung der Eigenwerte großer Matrizen wird ferner ein Ver fahren zur Reduktion einer Matrix auf Hessenbergform beschrieben. Der Teil V ent hält Methoden zur Interpolation, Approximation und numerischen Integration von Funk tionen. Die klassische Interpolation und Approximation durch Polynome wird knapp dargestellt, da ihre Bedeutung für technische und physikalische Anwendungen nicht sehr weitreichend ist. In Kapitel 12 werden die Grundlagen der Spline-Interpolation für lineare und kubische Splines untersucht. Das Kapitel 13 enthält relativ ausführlich numerische Quadratur- und Kubatur-Verfahren, wobei auch kurz auf die Berechnung uneigentlicher Integrale eingegangen wird.
Front Matter....Pages I-XIII
Front Matter....Pages 1-2
Grundlagen, Abschätzungen, Vektoriteration....Pages 3-28
Verfahren zur Berechnung von Eigenwerten....Pages 29-50
Front Matter....Pages 51-52
Interpolation und Approximation....Pages 53-96
Spline-Interpolation....Pages 97-114
Numerische Integration....Pages 115-151
Front Matter....Pages 153-154
Anfangswertprobleme gewöhnlicher Differentialgleichungen....Pages 155-188
Rand- und Eigenwertprobleme gewöhnlicher Differentialgleichungen....Pages 189-238
Front Matter....Pages 239-240
Differenzenverfahren zur numerischen Lösung von Anfangs- und Anfangs-Randwertproblemen bei hyperbolischen und parabolischen Differentialgleichungen....Pages 241-278
Hyperbolische Systeme 1. Ordnung....Pages 279-305
Randwertprobleme elliptischer Differentialgleichungen zweiter Ordnung....Pages 306-343
Back Matter....Pages 344-352