دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Winfried Grassmann. Javad Tavakoli
سری: CMS/CAIMS Books in Mathematics, 5
ISBN (شابک) : 3031100816, 9783031100819
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 369
[370]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Numerical Methods for Solving Discrete Event Systems: With Applications to Queueing Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای عددی برای حل سیستمهای رویداد گسسته: با کاربرد در سیستمهای صف نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی فارغ التحصیل جایگزینی برای شبیه سازی رویداد گسسته ارائه می دهد. نحوه فرمولبندی سیستمهای رویداد گسسته، نحوه تبدیل آنها به زنجیرههای مارکوف و نحوه محاسبه احتمالات گذرا و تعادلی آنها را شرح میدهد. مناسبترین روشها برای یافتن این احتمالات با جزئیات شرح داده شدهاند و الگوهایی برای الگوریتمهای کارآمد ارائه شدهاند. این الگوریتم ها را می توان بر روی هر لپ تاپی اجرا کرد، حتی در مواردی که زنجیره مارکوف صدها هزار حالت دارد. این کتاب دارای تفسیر احتمالی حذف گاوسی است، مفهومی که بسیاری از موضوعات تحت پوشش را متحد می کند، مانند زنجیره های مارکوف تعبیه شده و روش های تحلیل ماتریسی. مطالب ارائه شده باید به پزشکان کمک قابل توجهی کند تا مشکلات خود را حل کنند. این کتاب همچنین رویکرد جالبی برای آموزش دروس فرآیندهای تصادفی ارائه می دهد.
This graduate textbook provides an alternative to discrete event simulation. It describes how to formulate discrete event systems, how to convert them into Markov chains, and how to calculate their transient and equilibrium probabilities. The most appropriate methods for finding these probabilities are described in some detail, and templates for efficient algorithms are provided. These algorithms can be executed on any laptop, even in cases where the Markov chain has hundreds of thousands of states. This book features the probabilistic interpretation of Gaussian elimination, a concept that unifies many of the topics covered, such as embedded Markov chains and matrix analytic methods. The material provided should aid practitioners significantly to solve their problems. This book also provides an interesting approach to teaching courses of stochastic processes.
Preface Contents 1 Basic Concepts and Definitions 1.1 The Definition of a Discrete Event System 1.1.1 State Variables 1.1.2 Events 1.2 Markov Chains 1.2.1 Discrete-time Markov Chains (DTMCs) 1.2.2 Continuous-time Markov Chains (CTMCs) 1.3 Random Variables and Their Distributions 1.3.1 Expectation and Variance 1.3.2 Sums of Random Variables 1.3.3 Some Distributions 1.3.4 Generating Functions 1.4 The Kendall Notation 1.5 Little's Law 1.6 Sets and Sums Problems 2 Systems with Events Generated by Poisson or by Binomial Processes 2.1 The Binomial and the Poisson Process 2.2 Specification of Poisson Event Systems 2.3 Basic Principles for Generating Transition Matrices 2.4 One-dimensional Discrete Event Systems 2.4.1 Types of One-dimensional Discrete Event Systems 2.4.2 The M/M/1/N Queue 2.4.3 Birth–Death Processes, with Extensions 2.4.4 A Simple Inventory Problem 2.5 Multidimensional Poisson Event Systems 2.5.1 Types of Multidimensional Systems 2.5.2 First Example: A Repair Problem 2.5.3 Second Example: Modification of the Repair Problem 2.6 Immediate Events 2.6.1 An Example Requiring Immediate Events 2.6.2 A Second Example with Immediate Events: A Three-way Stop 2.7 Event-based Formulations of the Equilibrium Equations 2.8 Binomial Event Systems 2.8.1 The Geom/Geom/1/N Queue 2.8.2 Compound Events and Their Probabilities 2.8.3 The Geometric Tandem Queue Problems 3 Generating the Transition Matrix 3.1 The Lexicographic Code 3.2 The Transition Matrix for Systems with Cartesian State Spaces 3.3 The Lexicographic Code Used for Non-Cartesian State Spaces 3.4 Dividing the State Space into Subspaces 3.5 Alternative Enumeration Methods 3.6 The Reachability Method Problems 4 Systems with Events Created by Renewal Processes 4.1 The Renewal Process 4.1.1 Remaining Lifetimes 4.1.2 The Age Process 4.1.3 The Number of Renewals 4.2 Renewal Event Systems 4.2.1 Description of Renewal Event Systems 4.2.2 The Dynamics of Renewal Event Systems 4.3 Generating the Transition Matrix 4.3.1 The Enumeration of States in Renewal Event Systems 4.3.2 Ages Used as Supplementary State Variables 4.3.3 Remaining Lifetimes used as Supplementary State Variables 4.3.4 Using both Age and Remaining Life as Supplementary State Variables Problems 5 Systems with Events Created by Phase-type Processes 5.1 Phase-type (PH) Distributions 5.1.1 Phase-type Distributions based on Sums, and the Erlang Distribution 5.1.2 Phase-type Distributions Based on Mixtures, and the Hyper-exponential Distribution 5.1.3 Coxian Distributions 5.1.4 Renewal Processes of Phase type 5.1.5 Discrete Distributions as PH Distributions 5.2 The Markovian Arrival Process (MAP) 5.3 PH Event Systems 5.3.1 Immediate Events in PH Event Systems 5.3.2 Two Examples 5.4 Generating the Transition Matrix with Immediate Events Problems 6 Execution Times, Space Requirements, and Accuracy of Algorithms 6.1 Asymptotic Expressions 6.2 Space Complexity 6.2.1 The Sparsity of Transition Matrices 6.2.2 Storing only the Non-zero Elements of a Matrix 6.2.3 Storage of Banded Matrices 6.3 Time Complexity 6.4 Errors due to Inaccurate Data, Rounding, and Truncation 6.4.1 Data Errors 6.4.2 Rounding Errors 6.4.3 Truncation Errors Problems 7 Transient Solutions of Markov Chains 7.1 Extracting Information from Data Provided by Transient Solutions 7.2 Transient Solutions for DTMCs 7.3 Transient Solutions for CTMCs 7.4 Programming Considerations 7.5 An Example: A Three-Station Queueing System 7.6 Waiting Times 7.6.1 Waiting Times in the M/M/1 Queue under Different Queuing Disciplines 7.6.2 Comparison of the Queueing Disciplines 7.7 Conclusions Problems 8 Moving toward the Statistical Equilibrium 8.1 Structure of the Transition Matrix and Convergence toward Equilibrium 8.1.1 Paths and Their Effect on the Rate of Convergence 8.1.2 Communicating Classes 8.1.3 Periodic DTMCs 8.2 Transient Solutions using Eigenvalues 8.2.1 Basic Theorems 8.2.2 Matrix Power and Matrix Exponential 8.2.3 An Example of a Transient Solution using Eigenvalues 8.2.4 The Theorem of Perron-Frobenious 8.2.5 Perron–Frobenius and Non-Negative Matrices 8.2.6 Characterization of Transient Solutions 8.2.7 Eigenvalues with Multiplicities Greater than One 8.2.8 Coxian Distributions Characterized by Eigenvalues 8.2.9 Further Insights about PH Distributions Gained through Eigenvalues 8.2.10 Eigenvalues of Zero 8.2.11 Eigensolutions of Tridiagonal Transition Matrices 8.3 Conclusions Problems 9 Equilibrium Solutions of Markov Chains and Related Topics 9.1 Direct Methods 9.1.1 The State Elimination Method 9.1.2 Banded Matrices 9.1.3 Gaussian Elimination as Censoring 9.1.4 A Two Server Queue 9.1.5 Block-structured Matrices 9.1.6 The Crout Method 9.2 The Expected Time Spent in a Transient State 9.2.1 The Fundamental Matrix 9.2.2 Moments of the Time to Absorption 9.2.3 Finding Expectation and Variance for M/M/1 Waiting Times 9.3 Iterative Methods 9.3.1 Equilibrium Probabilities Found as Limits of Transient Probabilities 9.3.2 Methods based on Successive Improvements 9.3.3 Convergence Issues 9.3.4 Periodic Iteration Matrices 9.3.5 Examples 9.4 Conclusions Problems 10 Reducing the Supplementary State Space Through Embedding 10.1 The Semi-Markov Process (SMP) 10.1.1 Using Age as the Supplementary Variable 10.1.2 Using the Remaining Lifetime as Supplementary Variable 10.2 Embedding at Changes of the Physical State 10.2.1 Creating the Supplementary State Space 10.2.2 The Physical States of Embedded Markov Chains can Form Semi-Markov Processes 10.2.3 Numerical Experiments 10.3 Embedding at Specific Event Types 10.3.1 The Main Formulas 10.3.2 An Example where the Embedding Event is Never Disabled 10.3.3 An Example where the Embedding Event can be Disabled 10.3.4 The Embedded Markov Chains of M/G/1/N and GI/M/1/N Queues 10.3.5 Finding Random Time Distributions from Embedding Point Distributions Problem 11 Systems with Independent or Almost Independent Components 11.1 Complexity Issues when using Subsystems 11.2 Mathematical Tools for Combining Independent Subsystems 11.2.1 Combining DTMCs via Kronecker Products 11.2.2 CTMCs and Kronecker Sums 11.2.3 Using Kronecker Products in Almost Independent Subsystems 11.3 Jackson Networks 11.3.1 Simple Tandem Queues 11.3.2 General Jackson Networks 11.3.3 Closed Queueing Networks 11.4 Conclusions Problems 12 Infinite-state Markov Chains and Matrix Analytic Methods (MAM) 12.1 Properties Specific to Infinite-state Markov Chains 12.1.1 Diverging and Converging Markov Chains 12.1.2 Stochastic and Substochastic Solutions of Infinite-state Markov Chains 12.1.3 Convergence to the Desired Solution 12.2 Markov Chains with Repeating Rows, Scalar Case 12.2.1 Recurrent and Transient Markov Chains 12.2.2 The Extrapolating Crout Method 12.2.3 Using Generating Functions for Norming the Probabilities 12.2.4 The Waiting-time Distribution of the GI/G/1 Queue 12.2.5 The Line Length Distribution in a GI/G/1 Queue Obtained from its Waiting-Time Distribution 12.2.6 The M/D/c Queue 12.2.7 Increase of X limited to 1, and Decrease of X limited to 1 12.3 Matrices with Repeating Rows of Matrix Blocks 12.3.1 Recurrent and Transient GI/G/1 Type processes 12.3.2 The GI/G/1 Paradigm 12.3.3 Generating Functions 12.3.4 The QBD Process 12.3.5 The Classical MAM Paradigms 12.4 Solutions using Characteristic Roots and Eigenvalues 12.4.1 Solutions based on Characteristic Roots 12.4.2 Using Eigenvalues for Block-Structured Matrices with Repeating Rows 12.4.3 Application of the Generalized Eigenvalue Problem for Finding Equilibrium Solutions 12.4.4 Eigenvalue Solutions Requiring only one Eigenvalue 12.5 Conclusions Problems A Language Conventions for Algorithms Appendix References Index