دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed
نویسندگان: Hamming. Richard Wesley
سری:
ISBN (شابک) : 9780486652412, 0486652416
ناشر: Dover Publications
سال نشر: 1986;1962
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 مگابایت
کلمات کلیدی مربوط به کتاب روشهای عددی برای دانشمندان و مهندسان: الگوریتم، تحلیل عددی، آنالیز عددی، آنالیز عددی - محاسبات، تقریب چند جملهای، روش عددی، روشهای عددی، ریاضی عددی، سری فوریه، سری فوریه، آنالیز عددی، روش عددی، آنالیز عددی، آنالیز عددی - محاسبات، روشهای عددی
در صورت تبدیل فایل کتاب Numerical Methods for Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای عددی برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
CONTENTS 6 PREFACE 10 PART I Fundamentals and Algorithms 12 1 AN ESSAY ON NUMERICAL METHODS 14 1.1 THE FIVE MAIN IDEAS 14 1.2 SECOND-LEVEL IDEAS 16 1.3 THE FINITE DIFFERENCE CALCULUS 19 1.4 ON FINDING FORMULAS 20 1.5 CLASSICAL NUMERICAL ANALYSIS 23 1.6 MODERN NUMERICAL METHODS- FOURIER APPROXIMATION 24 1.7 OTHER CLASSES OF FUNCTIONS USED IN APPROXIMATIONS 28 1.8 MISCELLANEOUS 28 1.9 REFERENCES 29 2 NUMBERS 30 2.1 INTRODUCTION 30 2.2 THE THREE SYSTEMS OF NUMBERS 31 2.3 FLOATING-POINT NUMBERS 32 2.4 HOW NUMBERS COMBINE 35 2.5 THE RELATIONSHIP TO MATHEMATICS AND STATISTICS 38 2.6 THE STATISTICS OF ROUNDOFF 38 2.7 THE BINARY REPRESENTATION OF NUMBERS 40 2.8 THE FREQUENCY DISTRIBUTION OF MANTISSAS 44 2.9 THE IMPORTANCE OF THE RECIPROCAL DISTRIBUTION 49 2.10 HAND CALCULATION 50 3 FUNCTION EVALUATION 52 3.1 INTRODUCTION 52 3.2 THE EXAMPLE OF THE QUADRATIC EQUATION 52 3.3 REARRANGEMENT OF FORMULAS 54 3.4 SERIES EXPANSIONS 57 3.5 USE OF MACHINE TO DECIDE 59 3.6 THE MEAN VALUE THEOREM 60 3.7 SYNTHETIC DIVISION 62 3.8 ROUNDOFF EFFECTS 64 3.9 COMPLEX NUMBERS—QUADRATIC FACTORS 66 3.10 REPEATED EVALUATIONS 68 3.11 OVERFLOW AND UNDERFLOW 68 4 REAL ZEROS 70 4.1 INTRODUCTION 70 4.2 GRAPHICAL SOLUTION 71 4.3 THE BISECTION METHOD 73 4.4 THE METHOD OF FALSE POSITION 75 4.5 MODIFIED FALSE POSITION 76 4.6 NEWTON\'S METHOD 79 4.7 THE CONVERGENCE OF NEWTON\'S METHOD 81 4.8 INVARIANT ALGORITHMS 83 4.9 REMARKS ON COMPARING ALGORITHMS 85 4.10 TRACKING ZEROS 87 5 COMPLEX ZEROS 89 5.1 INTRODUCTION 89 5.2 THE CRUDE METHOD 91 5.3 AN EXAMPLE USING THE CRUDE METHOD 92 5.4 THE CURVES u = 0 AND v = 0 AT A ZERO 93 5.5 A PAIR OF EXAMPLES OF u = 0 AND 0 = 0 CURVES 97 5.6 GENERAL RULES FOR THE u = 0 AND v = 0 CURVES 100 5.7 THE PLAN FOR AN IMPROVED SEARCH METHOD 101 5.8 TRACKING A« = 0 CURVE 103 5.9 THE REFINEMENT PROCESS 104 5.10 MULTIPLE ZEROS IN TRACKING 106 5.11 FUNCTIONS OF TWO VARIABLES 108 6 *ZEROS OF POLYNOMIALS 109 6.1 WHY STUDY THIS SPECIAL CASE? 106 6.2 INVARIANCE PRINCIPLE 112 6.3 THE PLAN 113 6.4 PREPROCESSING THE POLYNOMIAL 113 6.5 THE REAL ZEROS 115 6.6 PLAN FOR FINDING COMPLEX ZEROS 117 6.7 BAIRSTOW\'S METHOD 119 6.8 CONVERGENCE OF BAIRSTOW\'S METHOD 121 6.9 MULTIPLE ZEROS 122 7 LINEAR EQUATIONS AND MATRIX INVERSION 123 7.1 INTRODUCTION 123 7.2 GAUSSIAN1 ELIMINATION—SIMPLIFIED VERSION 124 7.3 PIVOTING 126 7.4 GAUSS-JORDAN ELIMINATION 127 7.5 SCALING 127 7.6 INVARIANT SCALING—ANALYSIS OF VARIANCE 129 7.7 RANK 130 7.8 ILL-CONDITIONED SYSTEMS 132 7.9 THE RIGHT-HAND SIDES CAN CAUSE ILL-CONDITIONING 136 7.10 A DISCUSSION OF GAUSSIAN ELIMINATION 137 7.11 MATRIX INVERSION 1 139 7.12 MATRIX INVERSION 2 140 8 *RANDOM NUMBERS 143 8.1 WHY RANDOM NUMBERS? 143 8.2 SOME USES OF RANDOM NUMBERS 144 8.3 SOURCES OF RANDOM NUMBERS 147 8.4 THE RANDOM-NUMBER GENERATOR 149 8.5 TESTING A RANDOM-NUMBER GENERATOR 152 8.6 OTHER DISTRIBUTIONS 153 8.7 RANDOM MANTISSAS 154 8.8 SWINDLES 156 8.9 NOISE SIMULATION 156 9 THE DIFFERENCE CALCULUS 157 9.1 INTRODUCTION 157 9.2 THE DIFFERENCE OPERATOR 160 9.3 REPEATED DIFFERENCES 162 9.4 THE DIFFERENCE TABLE 164 9.5 TABULATING A POLYNOMIAL AT A REGULAR SPACING 166 9.6 THE FACTORIAL NOTATION 168 *9.7 STIRLING NUMBERS OF THE FIRST KIND 171 *9.8 STIRLING NUMBERS OF THE SECOND KIND 172 9.9 ALTERNATE NOTATIONS 173 9.10 AN EXAMPLE OF AN INTEGRAL EQUATION 175 10 ROUNDOFF ESTIMATION 177 10.1 WHY ROUNDOFF AGAIN? 177 10.2 RANGE ARITHMETIC (INTERVAL ARITHMETIC1) 178 10.3 ERROR PROPAGATION IN A DIFFERENCE TABLE 180 10.4 THE STATISTICS OF ROUNDOFF 181 10.5 CORRELATION IN THE kTH DIFFERENCES 184 10.6 ESTIMATION OF ROUNDOFF IN A TABLE 185 10.7 ISOLATED ERRORS 189 10.8 SYSTEMATIC ERRORS 191 11 THE SUMMATION CALCULUS 192 11.1 INTRODUCTION 192 11.2 SUMMATION BY PARTS 194 11.3 SUMMATION OF POWERS OF x 195 11.4 GENERATING FUNCTIONS 197 11.5 SUMS OF POWERS OF n AGAIN 198 11.6 THE BERNOULLI NUMBERS 200 12 INFINITE SERIES 203 12.1 INTRODUCTION 203 12.2 KUMMER\'Si COMPARISON METHOD 206 12.3 SOME STANDARD SERIES 207 12.4 THE RIEMANN ZETA FUNCTION 209 12.5 ANOTHER INTEGRAL EQUATION 210 12.6 EULER\'S METHOD 212 12.71 IMPROVING THE CONVERGENCE OF SEQUENCES 216 12.8 INTEGRALS AS APPROXIMATIONS TO SUMS 218 12.9 THE DIGAMMA FUNCTION 219 13 DIFFERENCE EQUATIONS 222 13.1 INTRODUCTION 222 13.2 FIRST-ORDER DIFFERENCE EQUATIONS WITH CONSTANT COEFFICIENTS 233 13.3 THE GENERAL FIRST-ORDER LINEAR DIFFERENCE EQUATION 225 13.4 THE FIBONACCI EQUATION 226 13.5 ANOTHER EXAMPLE OF A SECOND-ORDER LINEAR EQUATION 228 13.6 AN EXAMPLE OF A SYSTEM OF EQUATIONS 229 13.7 A SYSTEM OF EQUATIONS WITH VARIABLE COEFFICIENTS 230 13.8 SECOND-ORDER RECURRENCE RELATIONS 232 PART II Polynomial Approximation-Classical Theory 236 14 POLYNOMIAL INTERPOLATION 238 14.1 ORIENTATION 238 14.2 INTERPOLATION 239 14.3 INTERPOLATION USING ONLY FUNCTION VALUES 241 14.4 THE VANDERMONDE DETERMINANT 244 14.5 LAGRANGE* INTERPOLATION 246 14.6 ERROR OF POLYNOMIAL APPROXIMATIONS 247 14.7 DIFFICULTY OF POLYNOMIAL APPROXIMATION 249 14.8 ON SELECTING SAMPLE POINTS 252 14.9 SUBTABULATION 252 15 FORMULAS USING FUNCTION VALUES 254 15.1 INTRODUCTION 254 15.2 FORMULAS USING INTERPOLATION 255 15.3 THE TAYLOR-SERIES METHOD OF FINDING FORMULAS 257 15.4 THE DIRECT METHOD OF FINDING FORMULAS 259 15.5 THE INVERSE VANDERMONDE 262 15.6 UNIVERSAL MATRICES 264 15.7 SUMMARY OF THE DIRECT METHOD 267 15.8 APPENDIX 268 16 ERROR TERMS 269 16.1 THE NEED OF AN ERROR ESTIMATE 269 16.2 THREE BACKGROUND IDEAS 270 16.3 THE BASIC METHOD APPROACH 272 16.4 THE INFLUENCE FUNCTION 273 16.5 WHEN G(s) HAS A CONSTANT SIGN 275 16.6 THE PRACTICAL EVALUATION OF G(s) 279 16.7 WHEN G(s) IS NOT OF CONSTANT SIGN 280 16.8 THE FLAW IN THE TAYLOR-SERIES APPROACH 283 16.9 A CASE STUDY 284 17 FORMULAS USING DERIVATIVES 288 17.1 INTRODUCTION 288 17.2 HERMITEi INTERPOLATION 289 17.3 THE DIRECT METHOD 291 17.4 THE HERMITE UNIVERSAL MATRICES 292 17.5 SOME EXAMPLES 294 17.6 BIRKHOFF INTERPOLATION AND FORMULAS 298 17.7 AN EXAMPLE OF A NONINTERPOLATORY FORMULA 300 17.8 AN EXPERIMENT IN COMPARING THE VALUE OF DERIVATIVES 303 18 FORMULAS USING DIFFERENCES 307 18.1 USE OF DIFFERENCES 307 18.2 NEWTON\'S INTERPOLATION FORMULA 308 18.3 AN ALTERNATIVE FORM FOR THE DIVIDED DIFFERENCE TABLE 311 18.4 NEWTON\'S FORMULA AT EQUAL SPACES 313 18.5 INTERPOLATION IN TABLES 314 18.6 THE LOZENGE DIAGRAM 315 18.7 REMARKS ON THESE FORMULAS 319 18.8 MISCELLANEOUS INTERPOLATION FORMULAS 319 18.9 THE HAMMING-PINKHAM INTEGRATION FORMULA 321 18.10 THE DERIVATION OF THE FORMULAS 323 19 *FORMULAS USING THE SAMPLE POINTS AS PARAMETERS 328 19.1 INTRODUCTION 328 19.2 SOME EXAMPLES 329 19.3 GAUSS\' QUADRATURE (INTEGRATION)—FORMAL 333 19.4 GAUSS\' QUADRATURE—ANALYSIS 334 19.5 THE ERROR TERM 336 19.6 THREE SPECIAL CASES 338 19.7 GIVEN SOME SAMPLE POINTS 339 19.8 CHEBYSHEV INTEGRATION 341 19.9 RALSTON INTEGRATION 343 19.10 GAUSSIAN INTEGRATION USING DERIVATIVES 345 19.11 AN ALGORITHMIC APPROACH TO FINDING FORMULAS 346 20 COMPOSITE FORMULAS 350 20.1 INTRODUCTION 350 20.2 POLYNOMIAL APPROXIMATION AGAIN 351 20.3 THE NEWTON-COTES FORMULAS 353 20.4 REMARKS ON SOME FORMULAS 355 20.5 COMPOSITE FORMULAS 356 20.6 COMPOSITE OR HIGH-ACCURACY FORMULA? 358 20.7 GREGORY-TYPE FORMULAS 358 20.8 COMPOSITE INTERPOLATION 360 20.9 THE CUBIC SPLINE EQUATIONS 360 20.10 COMPARISON WITH POLYNOMIAL INTERPOLATION 363 21 INDEFINITE INTEGRALS—FEEDBACK 368 21.1 INTRODUCTION 368 21.2 SOME SIMPLE FORMULAS FOR INDEFINITE INTEGRALS 370 21.3 A GENERAL APPROACH 372 21.4 TRUNCATION ERROR 373 21.5 STABILITY 377 21.6 CORRELATED ROUNDOFF NOISE 380 21.7 SUMMARY 382 21.8 SOME GENERAL REMARKS 384 21.9 EXPERIMENTAL VERIFICATION OF STABILITY 386 *21.10 AN EXAMPLE OF A CONVOLUTION INTEGRAL WHICH ILLUSTRATES THE CONCEPT OF STABILITY 386 21.11 INSTABILITY IN ALGORITHMS 389 22 INTRODUCTION TO DIFFERENTIAL EQUATIONS 390 22.1 THE SOURCE AND MEANING OF DIFFERENTIAL EQUATIONS 390 22.2 THE DIRECTION FIELD 391 22.3 THE NUMERICAL SOLUTION 393 22.4 AN EXAMPLE 396 22.5 STABILITY OF THE PREDICTOR ALONE 398 22.6 STABILITY OF THE CORRECTOR 399 22.7 SOME GENERAL REMARKS 401 22.8 SYSTEMS OF EQUATIONS 402 23 A GENERAL THEORY OF PREDICTOR-CORRECTOR METHODS 404 23.1 INTRODUCTION 404 23.2 TRUNCATION ERROR 406 23.3 STABILITY 407 23.4 ROUNDOFF NOISE 411 23.5 THE THREE-POINT PREDICTOR 412 23.6 MILNE-TYPE PREDICTORS 413 23.7 ADAMS-BASHFORTH-TYPE PREDICTORS 415 23.8 GENERAL REMARKS ON THE CHOICE OF A METHOD 416 23.9 CHOICE OF PREDICTOR 417 23.10 SELECTED FORMULAS 418 23.11 DESIGNING A SYSTEM 419 23.12 NUMERICAL VERIFICATION 421 24 SPECIAL METHODS OF INTEGRATING ORDINARY DIFFERENTIAL EQUATIONS 423 24.1 INTRODUCTION AND OUTLINE 423 24.2 RUNGE-KUTTA METHODS 424 24.3 SECOND-ORDER-EQUATION METHODS WHEN y\' IS MISSING 425 24.4 LINEAR EQUATIONS 427 24.5 A METHOD WHICH USES y\', y\", AND y\"\' VALUES 428 24.6 WHEN THE SOLUTION IS NOT EASILY APPROXIMATED BY A POLYNOMIAL 430 24.7 CONSERVATION LAWS 431 24.8 STIFF EQUATIONS 432 24.9 PROBLEMS WITH WIDELY DIFFERENT TIME CONSTANTS 433 24.10 TWO-POINT PROBLEMS 424 25 LEAST SQUARES: THEORY 438 25.1 INTRODUCTION 438 25.2 THE PRINCIPLE OF LEAST SQUARES 440 25.3 OTHER CHOICES BESIDES LEAST SQUARES 442 25.4 THE NORMAL LAW OF ERRORS 443 25.5 THE LEAST-SQUARES STRAIGHT LINE 446 25.6 POLYNOMIAL CURVE FITTING 448 25.7 NONPOLYNOMIAL LEAST SQUARES AND OTHER GENERALIZATIONS 452 25.8 A COMPARISON OF LEAST SQUARES AND POWER-SERIES EXPANSION 453 25.9 CONCLUDING REMARKS ON LEAST SQUARES 454 26 ORTHOGONAL FUNCTIONS 455 26.1 INTRODUCTION 455 26.2 SOME EXAMPLES OF ORTHOGONAL SYSTEMS OF FUNCTIONS 456 26.3 LINEAR INDEPENDENCE AND ORTHOGONALITY 459 26.4 LEAST-SQUARES FITS AND THE FOURIER COEFFICIENTS 461 26.5 BESSEL\'S1 INEQUALITY AND COMPLETENESS 462 26.6 ORTHOGONAL POLYNOMIALS 463 26.7 THE LEGENDREi POLYNOMIALS 466 26.8 ORTHOGONAL POLYNOMIALS AND GAUSSIAN QUADRATURE 468 27 LEAST SQUARES: PRACTICE 470 27.1 GENERAL REMARKS ON THE POLYNOMIAL SITUATION 470 27.2 USE OF THE THREE-TERM RECURRENCE RELATION 471 27.3 THE CONSTRUCTION OF QUASI-ORTHOGONAL POLYNOMIALS 473 27.4 ON THE DEGREE OF THE POLYNOMIAL TO USE 475 27.5 NONLINEAR PARAMETERS 477 27.6 LEAST SQUARES WITH RESTRAINTS: CONTINUATION OF THE EXAMPLE IN SEC. 9.10 478 27.7 SMOOTHING BY LEAST-SQUARES FITTING 479 27.8 ANOTHER FAULT OF LEAST-SQUARES FITTING 480 28 CHEBYSHEV APPROXIMATION: THEORY 481 28.1 THE DEFINITION OF CHEBYSHEV POLYNOMIALS 481 28.2 CHEBYSHEV POLYNOMIALS OVER A DISCRETE SET OF POINTS 483 28.3 FIRST PROPERTIES OF THE CHEBYSHEV POLYNOMIALS 484 28.4 FURTHER PROPERTIES OF THE CHEBYSHEV POLYNOMIALS 486 28.5 THE CHEBYSHEV CRITERION 488 28.6 FURTHER IDENTITIES 490 28.7 THE SHIFTED CHEBYSHEV POLYNOMIALS 492 29 CHEBYSHEV APPROXIMATION: PRACTICE 494 29.1 ECONOMIZATION 494 29.2 ON FINDING A CHEBYSHEV EXPANSION (ECONOMIZATION) 496 29.3 THE DIRECT EVALUATION OF THE COEFFICIENTS 497 29.4 A DIRECT METHOD 499 29.5 THE CHEBYSHEV EXPANSION OF AN INTEGRAL 499 29.6 LANCZOS\' t PROCESS 501 29.7 THE DIRECT METHOD FOR DIFFERENTIAL EQUATIONS 503 29.8 THE EVALUATION OF CHEBYSHEV EXPANSIONS 504 29.9 THROWBACK 504 29.10 LEVELING THE ERROR CURVE 505 30 *RATIONAL FUNCTION APPROXIMATION 506 30.1 INTRODUCTION 506 30.2 THE DIRECT APPROACH 507 30.3 LEAST-SQUARES FITTING BY RATIONAL FUNCTIONS 508 30.4 CHEBSYHEV APPROXIMATION BY RATIONAL FUNCTIONS 509 30.5 RECIPROCAL DIFFERENCES 509 PART III Fourier Approximation— Modern Theory 512 31 FOURIER SERIES: PERIODIC FUNCTIONS 514 31.1 ORIENTATION 514 31.2 THE EFFECT OF SAMPLING—ALIASING 516 31.3 THE CONTINUOUS FOURIER EXPANSION 518 31.4 THE COMPLEX FORM OF THE FOURIER SERIES 520 31.5 THE FINITE FOURIER SERIES 521 31.6 RELATION OF THE DISCRETE AND CONTINUOUS EXPANSIONS 524 31.7 THE POWER SPECTRUM 526 31.8 INTERPOLATION OF PERIODIC FUNCTIONS 527 31.9 INTEGRATION 531 31.10 THE GENERAL-OPERATOR APPROACH 533 31.11 SOME REMARKS ON THE GENERAL METHOD 536 32 CONVERGENCE OF FOURIER SERIES 538 32.1 THE IMPORTANCE OF CONVERGENCE 538 32.2 STRAIGHT-LINE APPROXIMATION 539 32.3 FUNCTIONS HAVING CONTINUOUS HIGHER DERIVATIVES 540 32.4 IMPROVING THE CONVERGENCE 541 32.5 THE GIBBS PHENOMENON* 543 32.6 LANCZOS\' o FACTORS 545 32.7 THE a FACTORS IN THE GENERAL CASE 546 32.8 A COMPARISON OF CONVERGENCE METHODS 547 32.9 LANCZOS\' DIFFERENTIATION TECHNIQUE 549 32.10 SUMMARY 549 33 THE FAST FOURIER TRANSFORM 550 33.1 THE DIRECT CALCULATION 550 33.2 INTRODUCTION TO THE FAST FOURIER TRANSFORM (FFT) 551 33.3 THE CENTRAL IDEA OF THE FAST FOURIER TRANSFORM 552 33.4 THE FAST FOURIER TRANSFORM IN PRACTICE 553 33.5 DANGERS OF THE FOURIER TRANSFORM 554 33.6 FOURIER ANALYSIS USING 12 POINTS 554 33.7 COSINE EXPANSIONS 557 33.8 LOCAL FOURIER SERIES 557 34 THE FOURIER INTEGRAL: NONPERIODIC FUNCTIONS 559 34.1 OUTLINE AND PURPOSE OF CHAPTER 559 34.2 NOTATION 560 34.3 SUMMARY OF RESULTS 561 34.4 THE FOURIER INTEGRAL 565 34.5 SOME TRANSFORM PAIRS 566 34.6 BAND-LIMITED FUNCTIONS AND THE SAMPLING THEOREM 568 34.7 THE CONVOLUTION THEOREM 570 34.8 THE EFFECT OF A FINITE SAMPLE SIZE 572 35 A SECOND LOOK AT POLYNOMIAL APPROXIMATION—FILTERS 573 35.1 PURPOSE OF CHAPTER 573 35.2 ROUNDOFF NOISE 574 35.3 DERIVATIVES 576 35.4 INTEGRATION—A FIRST LOOK 577 35.5 SMOOTHING, AN EXAMPLE OF DESIGN 578 35.6 LEAST-SQUARES SMOOTHING 581 35.7 CHEBYSHEV SMOOTHING 582 35.8 THE FOURIER INTEGRAL 584 35.9 SUMMARY 585 36 \"INTEGRALS AND DIFFERENTIAL EQUATIONS 586 36.1 INTRODUCTION 586 36.2 SIMPLE RECURSIVE INTEGRATION FORMULAS 587 36.3 THE TRANSFER-FUNCTION APPROACH TO INTEGRATION FORMULAS 588 36.4 GENERAL INTEGRATION FORMULAS 592 36.5 DIFFERENTIAL EQUATIONS 594 36.6 CHEBYSHEV DESIGN OF INTEGRATION FORMULAS: THEORY 596 36.7 SOME DETAILS OF CHEBYSHEV DESIGN 598 36.8 SUMMARY 602 37 \'DESIGN OF DIGITAL FILTERS 603 37.1 BACKGROUND 603 37.2 A NONRECURSIVE CLASS OF DIGITAL SMOOTHING FILTERS 604 37.3 AN ESSAY ON SMOOTHING 608 37.4 DIFFERENTIATION FILTERS 610 37.5 RECURSIVE FILTERS 612 38 \'QUANTIZATION OF SIGNALS 614 38.1 INTRODUCTION 614 38.2 THE GRAY CODE 615 38.3 THE STATISTICAL DISTRIBUTION OF VALUES 618 38.4 NOISE DUE TO QUANTIZATION 620 38.5 THE QUANTIZATION THEOREM 622 38.6 THE POOR MAN\'S FOURIER SERIES 623 38.7 SOME GENERAL REMARKS ON QUANTIZATION EFFECTS 624 PART IV Exponential Approximation 626 39 SUMS OF EXPONENTIALS 628 39.1 INTRODUCTION 628 39.2 LINEAR INDEPENDENCE 629 39.3 KNOWN EXPONENTS 630 39.4 UNKNOWN EXPONENTS 631 39.5 LEAST-SQUARES FITTING 634 39.6 PRONY\'S METHOD WITH CONSTRAINTS 634 39.7 WARNINGS 635 39.8 EXPONENTIALS AND POLYNOMIALS 637 39.9 ERROR TERMS 638 40 *THE LAPLACE TRANSFORM 639 40.1 WHAT IS THE LAPLACE TRANSFORM? 639 40.2 SOME EXAMPLES OF LAPLACE TRANSFORMS 640 40.3 SOME GENERAL PROPERTIES OF LAPLACE TRANSFORMS 641 40.4 PERIODIC FUNCTIONS 643 40.5 APPROXIMATION OF LAPLACE TRANSFORMS 643 40.6 COMPLEX FREQUENCIES 645 40.7 A FORMULA FOR NUMERICAL INTEGRATION1 646 40.8 MIDPOINT FORMULAS 649 40.9 EXPERIMENTAL RESULTS 650 40.10 FOURIER TRANSFORMS 650 41 *SIMULATION AND THE METHOD OF ZEROS AND POLES 651 41.1 INTRODUCTION 651 41.2 SIMULATION LANGUAGES 652 41.3 SPECIAL METHODS3 653 41.4 THE FREQUENCY APPROACH AGAIN 654 41.5 THE z TRANSFORM 655 PART V Miscellaneous 658 42 APPROXIMATIONS TO SINGULARITIES 660 42.1 INTRODUCTION 660 42.2 SOME EXAMPLES OF INTEGRALS WITH SINGULARITIES 661 42.3 A SINGULARITY IN A LINEAR DIFFERENTIAL EQUATION 663 42.4 GENERAL REMARKS 666 43 OPTIMIZATION 668 43.1 INTRODUCTION 668 43.2 REVIEW OF CALCULUS RESULTS 670 43.3 LAGRANGE MULTIPLIERS 673 43.4 THE CURSE OF DIMENSION 675 43.5 THE GRADIENT 676 43.6 FOLLOWING THE GRADIENT 678 43.7 ESTIMATING THE GRADIENT 680 43.8 SOME PRACTICAL OBSERVATIONS 681 43.9 THE FLETCHER-POWELL METHOD 682 43.10 OPTIMIZATION SUBJECT TO LINEAR CONSTRAINTS 684 43.11 OTHER METHODS 686 44 LINEAR INDEPENDENCE 688 44.1 INTRODUCTION 688 44.2 LINEAR EQUATIONS 689 44.3 SAMPLING AND LINEAR INDEPENDENCE 691 44.4 POWERS OF x 693 44.5 ORTHOGONAL POLYNOMIALS AND LEAST SQUARES 693 44.6 WHAT SAMPLES? 695 44.7 WHICH BASIS OF FUNCTIONS? 695 45 EIGENVALUES AND EIGENVECTORS OF HERMITIAN MATRICES1 697 45.1 WHAT ARE EIGENVALUES AND EIGENVECTORS? 697 45.2 NOTATION AND HERMITIAN MATRICES 699 45.3 SIMILARITY REDUCTIONS 701 45.4 ORTHOGONAL TRANSFORMATIONS 703 45.5 HOUSEHOLDER TRANSFORMATIONS 704 45.6 TRIDIAGONALIZATION 705 45.7 THE QR ALGORITHM 710 45.8 OVERDETERMINED SYSTEMS OF LINEAR EQUATIONS 711 N+l THE ART OF COMPUTING FOR SCIENTISTS AND ENGINEERS 713 N + l.l IMPORTANCE OF THE TOPIC 713 N + 1.2 WHAT ARE WE GOING TO DO WITH THE ANSWER? 714 N + 1.3 WHAT DO WE KNOW? 716 N + 1.4 DESIGNING THE COMPUTATION ROUTINE 714 N + 1.5 ITERATION OF THE ABOVE STEPS 717 N + 1.6 A CODE OF ETHICS 718 N + 1.7 ESTIMATION OF THE EFFORT NEEDED TO SOLVE THE PROBLEM 718 N + 1.8 LEARNING FROM CHANGES IN THE PLAN 719 N + 1.9 THE OPEN SHOP PHILOSOPHY 720 N + 1.10 CLOSING REMARKS 721 BIBLIOGRAPHY 722 INDEX 726