دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 8
نویسندگان: Steven Chapra. Raymond Canale
سری:
ISBN (شابک) : 1260232077, 9781260232073
ناشر: McGraw-Hill Education
سال نشر: 2020
تعداد صفحات: 1005
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 110 مگابایت
در صورت تبدیل فایل کتاب Numerical Methods for Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های عددی برای مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش هشتم روشهای عددی برای مهندسین چاپرا و کانال، تکنیکهای آموزشی را حفظ میکند که باعث موفقیت متن شده است. این کتاب روشهای عددی استانداردی را که توسط دانشجویان و مهندسان شاغل استفاده میشود، پوشش میدهد. اگرچه تئوری مربوطه پوشش داده شده است، اما تاکید اولیه بر چگونگی استفاده از روش ها برای حل مسائل مهندسی است. هر بخش از کتاب شامل یک فصل است که به مطالعات موردی از رشته های مهندسی عمده اختصاص دارد. بسیاری از مسائل جدید یا تجدید نظر شده پایان فصل و مطالعات موردی از رویه مهندسی واقعی استخراج شده اند. این نسخه همچنین شامل چندین موضوع جدید از جمله فرمول جدید برای خطوط مکعبی، ادغام مونت کارلو، و مطالب تکمیلی در معادلات دیفرانسیل جزئی هذلولی است.
The eighth edition of Chapra and Canale's Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. The book covers the standard numerical methods employed by both students and practicing engineers. Although relevant theory is covered, the primary emphasis is on how the methods are applied for engineering problem solving. Each part of the book includes a chapter devoted to case studies from the major engineering disciplines. Numerous new or revised end-of chapter problems and case studies are drawn from actual engineering practice. This edition also includes several new topics including a new formulation for cubic splines, Monte Carlo integration, and supplementary material on hyperbolic partial differential equations.
Title Chapter 1 Mathematical Modeling and Engineering Problem Solving 1.1 A Simple Mathematical Model 1.2 Conservation Laws and Engineering Problems Chapter 2 Programing and Software 2.1 Packages and Programing 2.2 Structured Programing 2.3 Modulat Programming 2.4 Excel 2.5 Matlab 2.6 Mathcad 2.7 Other Languages and Libraries Problems Chapter 3 Approximations and Round-Off Errors 3.1 Significant Figures 3.2 Accuracy and Precision 3.3 Error Definitions 3.4 Round-Off Errors Problems Chapter 4 Truncation Errors and the Taylor Series 4.1 The Taylor Series 4.2 Error Propagation 4.3 Total Numerical Error 4.4 Blunders, Formulation Errors, and Data Uncertainty Problems Epilogue: Part One Epilogue: Cont. Roots of Equations Chapter 5 Bracketing Methods 5.1 Graphical Methods 5.2 BIsection Method 5.3 The False-Position Method 5.4 Incremental Searches and Determining Initial Guesses Problems Chapter 6 Open Methods 6.1 Simple Fixed-Point Iteration 6.2 The Newton-Raphson Method 6.3 The Secant Method 6.4 Brent\'s Method 6.5 Multiple Roots 6.6 Systems of Nonlinear Equations Problems Chapter 7 Roots of Polynomials Chapter 8 Case Studies: Roots of Equations 8.1 Ideal and Nonideal Gas Laws 8.2 Greenhouse Gases and Rainwater 8.3 Design of an Electric Circuit 8.4 Pipe Friction Problems Epilogue: Part Two Epilogue: Cont. Linear Algebraic Equations Chapter 9 Gauss Elimination 9.1 Solving Small Numbers of Equations Naive Gauss Elimination 9.3 Pitfalls of Elimination Methods 9.4 Techniques for Improving Solutions 9.5 Complex Systems 9.6 Nonlinear Systems of Equations 9.7 Gauss-Jordan 9.8 Summary Problems Chapter 10 LU Decomposition and Matrix Inversion 10.1 LU Decomposition 10.2 The Matrix Inverse 10.3 Error Analysis and System Condition Problems Chapter 11 Special Matricies and Gauss-Seidel 11.1 Special Matricies 11.2 Gauss-Seidel 11.3 Linear Algebraic Equations With Software Packages Problems Chapter 12 Case Studies: Linear Algebraic Equations 12.1 Steady-State Analysis of a System of Reactors 12.2 Analysis of a Statically Determinate Truss 12.3 Currents and Voltages in Resistor Circuits 12.4 Spring-Mass Systems Problems Epilogue: Part Three Epilogue: Cont. Optimization Chapter 13 One-Dimensional Unconstrained Optimization 13.1 Golden-Section Search 13.2 Parabolic Interpolation 13.3 Newton\'s Method 13.4 Brent\'s Method Problems Chapter 14 Multidimensional Unconstrained Optimization 14.1 Direct Methods 14.2 Gradient Methods Problems Chapter 15 Constrained Optimization 15.1 Linear Programming 15.2 Nonlinear Constrained Optomization 15.3 Optomization With Software Packages Problems Chapter 16 Case Studies: Optimization 16.1 Least-Cost Design of a Tank 16.2 Least-Cost Treatment of Wastewater 16.3 Maximum Power Transfer for a Circuit 16.4 Equlibrium and Minimum Potential Energy Problems Epilogue: Part Four Epilogue: Cont. Curve Fitting Chapter 17 Least-Squares Regression 17.1 Linear Regression 17.2 Polynomial Regression 17.3 Multiple Linear Regression 17.4 General Linear Least Squares 17.5 Nonlinear Regression Problems Chapter 18 Interpolation 18.1 Newton\'s Divide-Difference Interpolating Polynomials 18.2 Lagrange Interpolating Polynomials 18.3 Coefficients of an Interpolating Polynomial 18.4 Inverse Interpolation 18.5 Additional Comments 18.6 Spline Interpolation 18.7 Multidimensional Interpolation Problems Chapter 19 Fourier Approximation 19.1 Curve fittins with Sinusodial Functions 19.2 Continuous Fourier Series 19.3 Frequency and Time Domains 19.4 Fourier Integral and Transform 19.5 Discrete Fourier Transform 19.6 Fast Fourier Transform 19.7 The Power Spectrum 19.8 Curve Fitting With Software Packages Problems Chapter 20 Case Studies: Curve Fitting 20.1 Fitting Enzyme Kinetics 20.2 Use of Splines to Estimate Heat Transfer 20.3 Fourier Analysis 20.4 Analysis of Experimental Data Problems Epilogue: Part Five Epilogue: Cont. Numerical Differentiation and Integration Chapter 21 Newton-Cotes Integration Formulas 21.1 The Trapezoidal Rule 21.2 Simpson\'s Rules 21.3 Integration With Unequal Segments 21.4 Open Integration Formulas 21.5 Multiple Integrals Problems Chapter 22 Integration of Equations 22.1 Newton-Cotes Algorithms for Equations 22.2 Romberg Integration 22.3 Adaptive Quadrature 22.4 Gauss Quadrature 22.5 Improper Integrals 22.6 Monte Carlo Integration Problems Chapter 23 Numerical Differentiation 23.1 High-Accuracy Differentiation Formulas 23.2 Richardson Extrapolation 23.3 Derivatives of Unequally Spaced Data 23.4 Derivatives and Integrals for Data With Errors 23.5 Partial Derivatives 23.6 Numerical Integratio/Differentiation With Software Packages Problems Chapter 24 Case Studies: Numerical Integration and Differentiation 24.1 Integration to Determine the Total Quantity of Heat 24.2 Effective Force on the Mast of a Racing Sailboat 24.3 Root-Mean-Square Current by Numerical Integration 24.4 Numerical Integration to Compute Work Problems Epilogue: Part Six Epilogue: Cont. Ordinary Differential Equations Chapter 25 Runge-Kutta Methods 25.1 Euler\'s Method 25.2 Improvements of Euler\'s Method 25.3 Runge-Kutta Methods 25.4 Systems of Equations 25.5 Adaptive Runge-Kutta Methods Problems Chapter 26 Stiffness and Multistep Methods 26.1 Stiffness 26.2 Multistep Methods Problems Chapter 27 Boundary-Value and Eigenvalue Problems 27.1 General Methods for Boundary-Value Problems 27.2 Eigenvalue Problems 27.3 ODEs and Eigenvalues With Software Packages Problems Chapter 28 Case Studies: Ordinary Differential Equations 28.1 Using ODEs to Analyze the Transient Responce of a Reactor 28.2 Predator-Prey Modles and Chaos 28.3 Simulating Transient Current for an Electric Circuit 28.4 The Swinging Pendulum Problems Epilogue: Part Seven Epilogue: Cont. Partial Differential Equations Chapter 29 Finite Difference: Elliptic Equations 29.1 The Laplace Equation 29.2 Solution Technique 29.3 Boundary Conditions 29.4 The Control-Volume Approach 29.5 Software to Solve Elliptic Equations Problems Chapter 30 Finite Difference: Parabolic Equations 30.1 The Heat-Conduction Equation 30.2 Explicit Methods 30.3 A Simple Implicit Method 30.4 The Crank-Nicolson Method 30.5 Parabolic Equations in Two Spatial Dimensions Problems Chapter 31 Finite-Element Method 31.1 The General Approach 31.2 Finite-Element Application in One Dimension 31.3 Two-Dimensional Problems 31.4 Solving PDEs With Software Packages Problems Chapter 32 Case Studies: Partial Eifferential Equations 32.1 One-Dimensional Mass Balance of a Reactor 32.2 Deflections of a Plate 32.3 Two-Dimensional Electrostatic Field Problems 32.4 Finite-Element Solution of a Series of Springs Problems Epilogue: Part Eight Appendix A Appendix B Appendix C Bibliography Index