دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Jean-Pierre Corriou
سری:
ISBN (شابک) : 3030893650, 9783030893651
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 730
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Numerical Methods and Optimization: Theory and Practice for Engineers (Springer Optimization and Its Applications, 187) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای عددی و بهینهسازی: تئوری و عمل برای مهندسان (بهینهسازی اسپرینگر و کاربردهای آن، 187) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن، که گستره بسیار زیادی از روشهای عددی و بهینهسازی را در بر میگیرد، در درجه اول برای دانشجویان پیشرفته در مقطع کارشناسی و کارشناسی ارشد طراحی شده است. پیشینه حساب دیفرانسیل و انتگرال و جبر خطی تنها نیازهای ریاضی هستند. فراوانی روش های پیشرفته و کاربردهای عملی برای دانشمندان و محققان شاغل در شاخه های مختلف مهندسی جذاب خواهد بود. خواننده به تدریج با روشهای عددی عمومی و الگوریتمهای بهینهسازی در هر فصل آشنا میشود. مثالها با روشهای مختلف همراه هستند و دانشآموزان را به درک بهتر کاربردها راهنمایی میکنند. کاربر اغلب این فرصت را دارد که نتایج خود را با کدهای برنامه نویسی پیچیده تأیید کند. هر فصل با تمرینهای فارغالتحصیلی پایان مییابد که به دانشآموز موارد جدید برای مطالعه و همچنین ایدههایی برای مشکلات امتحانی/تکالیف برای مربی میدهد. مجموعه ای از برنامه های ساخته شده در Matlab™ در وب سایت شخصی نویسنده موجود است و روش های عددی و بهینه سازی را ارائه می دهد.
This text, covering a very large span of numerical methods and optimization, is primarily aimed at advanced undergraduate and graduate students. A background in calculus and linear algebra are the only mathematical requirements. The abundance of advanced methods and practical applications will be attractive to scientists and researchers working in different branches of engineering. The reader is progressively introduced to general numerical methods and optimization algorithms in each chapter. Examples accompany the various methods and guide the students to a better understanding of the applications. The user is often provided with the opportunity to verify their results with complex programming code. Each chapter ends with graduated exercises which furnish the student with new cases to study as well as ideas for exam/homework problems for the instructor. A set of programs made in Matlab™ is available on the author’s personal website and presents both numerical and optimization methods.
Preface Acknowledgments Contents Nomenclature 1 Interpolation and Approximation 1.1 Introduction 1.2 Approximation of a Function by Another Function 1.2.1 Approximation Functions 1.2.2 Polynomial Approximation 1.2.2.1 Interpolation Polynomial of Degree n 1.2.2.2 Least Squares Polynomial 1.2.2.3 Minimax Polynomial 1.2.2.4 Series Expansion 1.2.2.5 Calculation of Polynomial Pn(x) 1.3 Determination of Interpolation Polynomials 1.3.1 Calculation of the Interpolation Polynomial 1.3.2 Newton Interpolation Polynomial 1.3.3 Lagrange Interpolation Polynomial 1.3.4 Polynomial Interpolation with Regularly Spaced Points 1.3.4.1 Forward Differences 1.3.4.2 Backward Differences 1.3.4.3 Central Differences 1.3.5 Hermite Polynomials 1.3.6 Chebyshev Polynomials and Irregularly Spaced Points 1.3.6.1 Minimization of the Maximum Error 1.3.6.2 Chebyshev Economization 1.3.6.3 Runge Phenomenon 1.3.7 Interpolation by Cubic Hermite Polynomial 1.3.8 Interpolation by Spline Functions 1.3.9 Interpolation by Parametric Splines 1.4 Bézier Curves 1.5 Discussion and Conclusion 1.6 Exercise Set 2 Numerical Integration 2.1 Introduction 2.2 Newton and Cotes Closed Integration Formulas 2.2.1 Global Integration on Interval [a,b] 2.2.2 Integration on Subintervals 2.3 Open Newton and Cotes Integration Formulas 2.4 Conclusions on Newton and Cotes Integration Formulas 2.5 Repeated Integration by Dichotomy and Romberg's Integration 2.6 Numerical Integration with Irregularly Spaced Points 2.6.1 Reminder on Orthogonal Polynomials 2.6.2 Gauss–Legendre Quadrature 2.6.3 Gauss–Laguerre Quadrature 2.6.4 Gauss–Chebyshev Quadrature 2.6.5 Gauss–Hermite Quadrature 2.7 Discussion and Conclusion 2.8 Exercise Set 3 Equation Solving by Iterative Methods 3.1 Introduction 3.2 Graeffe's Method 3.3 Bernoulli's Method 3.4 Bairstow's Method 3.5 Existence of a Root of a Function 3.6 Bisection and Regula Falsi Methods 3.6.1 Bisection Method 3.6.2 Regula Falsi Method 3.7 Method of Successive Substitutions 3.8 Newton's Method and Derived Methods 3.8.1 Newton's Method 3.8.2 Secant Method 3.9 Wegstein's Method 3.10 Aitken's Method 3.11 Homotopy Method 3.11.1 Introduction 3.11.2 Continuation Method 3.12 Discussion and Conclusion 3.13 Exercise Set 4 Numerical Operations on Matrices 4.1 Introduction 4.2 Reminder About Matrices 4.3 Reminder on Vectors 4.4 Linear Transformations and Subspaces 4.4.1 Gershgorin Theorem 4.4.2 Cayley–Hamilton Theorem and Consequences 4.4.3 Power Method 4.5 Similar Matrices and Matrix Polynomials 4.6 Symmetric Matrices and Hermitian Matrices 4.7 Reduction of Matrices Under a Simple Form 4.8 Rutishauser's LR Method 4.9 Householder's Method 4.10 Francis's QR Method 4.10.0.1 QR Factorization by Gram–Schmidt 4.10.0.2 QR Householder's Factorization 4.10.0.3 QR Factorization by Rotation Matrices 4.10.0.4 Application of QR Factorization 4.11 Discussion and Conclusion 4.12 Exercise Set 5 Numerical Solution of Systems of Algebraic Equations 5.1 Introduction 5.2 Solution of Linear Triangular Systems 5.3 Solution of Linear Systems: Gauss Elimination Method 5.4 Calculation of a Matrix Determinant 5.5 Gauss–Jordan Algorithm 5.6 normalnormalLDLT Factorization 5.7 Cholesky's Decomposition 5.8 Singular Value Decomposition (SVD) 5.9 Least Squares Method for Linear Overdetermined Systems 5.10 Iterative Solution of Large Linear Systems (Jacobi andGauss–Seidel) 5.11 Solution of Tridiagonal Linear Systems of Equations 5.12 Solution of Nonlinear Systems: Newton–Raphson Method 5.13 Solution of Nonlinear Systems by Optimization 5.14 Discussion and Conclusion 5.15 Exercise Set 6 Numerical Integration of Ordinary Differential Equations 6.1 Introduction 6.1.1 Linear and Nonlinear Ordinary Differential Equations 6.1.2 Uniqueness of the Solution 6.2 Initial Value Problems 6.2.1 One-Step Methods 6.2.1.1 Euler's Method 6.2.1.2 A Few Ideas of Numerical Calculation 6.2.1.3 Runge–Kutta Methods 6.2.1.4 Semi-Implicit and Implicit Runge–Kutta Schemes 6.2.1.5 Variable-Step Runge–Kutta–Fehlberg Method 6.2.2 Multi-Step Methods 6.2.3 Open Integration Formulas 6.2.3.1 Closed Integration Formulas 6.2.3.2 Predictor–Corrector Methods 6.2.3.3 Backward Differentiation Methods (BDF) 6.3 Stability of Numerical Integration Methods 6.4 Stiff Systems 6.5 Differential–Algebraic Systems 6.6 Ordinary Differential Equations with Boundary Conditions 6.7 Discussion and Conclusion 6.8 Exercise Set 7 Numerical Integration of Partial Differential Equations 7.1 Introduction 7.2 Some Examples of Physical Systems 7.2.1 Heat Transfer by Conduction 7.2.2 Mass Transfer by Diffusion 7.2.3 Wave Equation 7.2.4 Laplace's Equation 7.3 Properties of Partial Differential Equations 7.3.1 Generalities 7.3.2 Well-Posed Problem 7.3.3 Classification 7.3.4 Characterization of the Solutions 7.4 Method of Characteristics 7.4.1 Linear First Order Partial Differential Equation 7.4.2 Nonlinear First Order Partial Differential Equation 7.4.3 Quasi-Linear Second Order Partial Differential Equation 7.5 Finite Difference Method 7.5.1 Introduction 7.5.2 Discretization 7.5.2.1 Requirement for a Discretization Scheme 7.5.2.2 Taylor Series Expansion 7.5.2.3 Example of Discretization 7.5.2.4 Different Numerical Schemes Applicable to the One-Dimensional Conductive Heat Transfer Equation 7.5.2.5 Influence of the Boundary Conditions on Numerical Solving 7.5.2.6 Discretization for the One-Dimensional Conductive Heat Transfer Equation in Cylindrical Geometry 7.5.2.7 Different Numerical Schemes for the Two-Dimensional Conductive Heat Transfer Equation 7.6 Automatic Calculation of Partial Derivatives 7.6.1 Calculation of ( ∂u∂x )0 and ( ∂u∂x )N 7.6.2 Calculation of ( ∂2 u∂x2 )0 and ( ∂2 u∂x2 )N 7.6.3 Some Other Differentiation Schemes 7.6.3.1 Four-Point Scheme 7.6.3.2 Four-Point Upwind Scheme 7.6.3.3 Five-Point Upwind Scheme 7.6.4 Numerical Differentiation by Complex Numbers 7.7 Method of Lines 7.7.1 Case of Dirichlet Boundary Conditions 7.7.2 Case of Boundary Neumann Conditions 7.7.3 Application of the Method of Lines to the Simulationof a Heat Exchanger 7.7.3.1 Co-current Heat Exchanger 7.7.3.2 Counter-Current Heat Exchanger 7.8 Finite Differences on an Irregular Grid 7.9 Solution of a Partial Differential Equation by Splines 7.10 Spectral Methods 7.10.1 Method of Weighted Residuals 7.10.2 Radial Basis Functions 7.10.3 Polynomial Collocation for an Initial Value OrdinaryDifferential Equation 7.10.4 Method of Weighted Residuals for an Ordinary Differential Equation with Boundary Conditions 7.10.5 Method of Weighted Residuals for a Partial Differential Equation 7.11 Moving Grid 7.11.1 Theory 7.11.2 Test on an Analytic Function 7.11.3 Implementation in a Physical Problem 7.11.4 Short Presentation of the General Framework 7.11.5 Application to a Liquid Phase Chromatography,Approximation in the Equilibrium Case 7.11.6 Application to a Liquid Phase Chromatography, Rigorous Treatment for the Case with LDF 7.11.6.1 Boundary Conditions 7.11.6.2 PD-Equil Model 7.11.6.3 PD-LDF Model 7.11.6.4 Simulation of a Chromatographic Separation 7.12 Finite Volume Method 7.12.1 Introduction 7.12.2 Mesh 7.12.3 Integration on any Control Volume 7.12.4 Account of Boundary Conditions at Left 7.12.5 Account of Boundary Conditions at Right 7.12.6 Case of an Interface Between Two Solids of DifferentConductivities 7.12.7 Numerical Solving 7.12.8 Two-Dimensional Problem 7.12.9 Extension to Flows 7.12.10 Conservation Applied to a Control Volume 7.12.11 SIMPLER Algorithm 7.13 Finite Element Method 7.13.1 Step 1: Elements and Nodes 7.13.2 Step 2: Functions of Polynomial Interpolation 7.13.3 Steps 3–4: Determination of the Conductance Matrices and Nodal Flux, Determination by Assembling of the Global Conductance Matrix and the Global Equivalent Nodal Flux Vector 7.13.3.1 Heat Transfer 7.13.3.2 Linear Elasticity 7.13.3.3 Heat Transfer (Following) 7.13.3.4 Treatment of 1D Heat Transfer by Finite Elements 7.13.3.5 Application to the Entire Domain 7.13.4 Convergence, Compatibility, Completeness 7.13.5 Case of Transient Systems 7.13.5.1 Development of the Method 7.13.5.2 One-Step Methods 7.13.5.3 Multiple Step Methods 7.13.6 Heat Transfer and Fluid Transport in a Tube 7.13.7 Flow in a Porous Medium 7.13.8 Diffusion—Chemical Reaction 7.13.9 Fluid Mechanics 7.13.10 Two-Dimensional Formulation 7.13.11 Examples of 2D and 3D Simulations 7.13.11.1 2D Simulation 7.13.11.2 3D Simulations 7.14 Boundary Element Method 7.14.1 Mathematical Preliminaries 7.14.2 Potential Problems 7.14.3 Green's Function Method 7.14.4 Analytical-Numerical Boundary Element Method 7.14.5 Boundary Element Method in 2D Heat Transfer 7.15 Discussion and Conclusion 7.16 Exercise Set 8 Analytical Methods for Optimization 8.1 Introduction 8.2 Mathematical Reminder 8.3 Introduction 8.4 Functions of One Variable 8.4.1 Infinite Interval 8.4.2 Finite Interval 8.4.3 Presence of Discontinuities 8.5 Functions of Several Variables 8.5.1 Infinite Interval 8.5.2 Finite Interval 8.5.3 Presence of Discontinuities 8.6 Function Subject to Equality Constraints 8.6.1 Jacobi's Method 8.6.2 Lagrange Multipliers 8.6.3 Signification of Lagrange Multipliers 8.6.4 Conditions of Minimum 8.6.5 Conditions of Minimum by the Projected Gradient in the Case of Equality Constraints 8.7 Function Subject to Inequality Constraints 8.7.1 Use of Slack Variables 8.7.2 Karush–Kuhn–Tucker (KKT) Parameters 8.7.3 Conditions of Minimum by the Projected Gradient in the Case of Inequality Constraints 8.8 Function Subject to Equality and Inequality Constraints 8.8.1 Setting of the Problem 8.8.2 Lagrange Duality 8.9 Sensitivity Analysis 8.10 Discussion and Conclusion 8.11 Exercise Set 9 Numerical Methods of Optimization 9.1 Introduction 9.2 Functions of One Variable 9.2.1 Bisection Method 9.2.2 Newton's Method 9.2.3 Fibonacci's Method 9.3 Functions of Several Variables 9.4 Methods of Direct Search 9.4.1 Simple One Variable Search 9.4.2 Simplex Method 9.4.3 Acceleration Methods 9.4.4 Nelder–Mead Simplex 9.4.5 Box Complex 9.4.6 Genetic Algorithm 9.5 Gradient Methods 9.5.1 Case of a Quadratic Function 9.5.2 Case of a Non-quadratic Function 9.5.3 Method of Steepest Descent 9.5.4 Search in a Given Direction normalnormals 9.5.4.1 Algorithm of Bracketing–Shrinkage 9.5.4.2 Wolfe Algorithm 9.5.4.3 Algorithm of Cubic Approximation 9.5.4.4 Algorithm of the Golden Section 9.5.5 Conjugate Gradient Method 9.5.6 Newton–Raphson Method 9.5.7 Quasi-Newton Method 9.5.8 Methods for the Sums of Squares 9.5.9 Gauss–Newton Method 9.5.10 Levenberg–Marquardt Method 9.5.10.1 Case of Any Function 9.5.10.2 Case of a Sum of Squares 9.5.11 Quasi-Newton Approximation 9.5.12 Systems of Nonlinear Equations 9.6 Discussion and Conclusion 9.7 Exercise Set 10 Linear Programming 10.1 Introduction 10.2 Formulation of the Problem Based on Examples 10.2.1 Use of Slack Variables 10.2.2 Use of Slack and Artificial Variables 10.2.3 Conditions of Optimality 10.3 Solving the Problem: Simplex Tableau 10.3.1 Geometric Interpretation on Example 10.1 10.3.1.1 Minimization of f 10.3.1.2 Maximization of f 10.3.1.3 Simplex Tableau 10.3.2 Simplex Tableau with Slack and Artificial Variables 10.4 Theoretical Solution 10.5 Case of Simultaneous Inequality and Equality Constraints 10.6 Duality 10.6.1 Example of Duality 10.6.2 Demonstration of the Duality Theorem 10.6.3 Demonstration of the Duality Theorem Basedon the Lagrangian 10.7 Interior Point Methods 10.7.1 Karmarkar Projection Method 10.7.1.1 Passage from the Standard Form to Karmarkar's Form 10.7.1.2 Karmarkar's Algorithm 10.7.2 Affine Transformation 10.7.2.1 Consequences of the Affine Transformation 10.7.2.2 Algorithm of Affine Transformation 10.8 Discussion and Conclusion 10.9 Exercise Set 11 Quadratic Programming and Nonlinear Optimization 11.1 Introduction 11.2 Quadratic Optimization, Karush–Kuhn–Tucker Conditionsand Solution by the Simplex 11.2.1 First Presentation 11.2.2 Second Presentation 11.2.3 Solution Under the Form of a Simplex Problem 11.3 Quadratic Optimization, Barrier Method 11.4 Nonlinear Optimization by Successive Quadratic Programming 11.4.1 Introduction 11.4.2 Notion of Feasible Region and Tangent Cone 11.4.3 Successive Quadratic Programming (SQP) 11.4.4 Specificities and Difficulties of the SQP Problem 11.4.4.1 Merit Functions 11.4.4.2 Filter Methods 11.4.4.3 Reduced Hessian Methods 11.5 Discussion and Conclusion 11.6 Exercise Set 12 Dynamic Optimization 12.1 Introduction 12.2 Problem Statement 12.3 Variational Method in the Mathematical Framework 12.3.1 Variation of the Criterion 12.3.2 Variational Problem Without Constraints:Fixed Boundaries 12.3.3 Variational Problem with Constraints: General Case 12.3.4 Hamilton–Jacobi Equation 12.4 Dynamic Optimization in Continuous Time 12.4.1 Variational Methods 12.4.2 Variation of the Criterion 12.4.3 Euler Conditions 12.4.4 Weierstrass Condition and Hamiltonian Maximization 12.4.5 Hamilton–Jacobi Conditions and Equation 12.4.5.1 Case with Constraints on Control and State Variables 12.4.5.2 Case with Terminal Constraints 12.4.6 Maximum Principle 12.4.7 Singular Arcs 12.4.8 Numerical Issues 12.5 Dynamic Programming (Discrete Time) 12.5.1 Classical Dynamic Programming 12.5.2 Hamilton–Jacobi–Bellman Equation 12.6 Conclusion 12.7 Exercise Set Index