دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Rosen. Michael Ira
سری: Graduate texts in mathematics 210
ISBN (شابک) : 9781441929549, 1441929541
ناشر: Springer
سال نشر: 2011
تعداد صفحات: 355
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
کلمات کلیدی مربوط به کتاب نظریه اعداد در زمینه های تابع: میدان های محدود (جبر)، نظریه اعداد
در صورت تبدیل فایل کتاب Number theory in function fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه اعداد در زمینه های تابع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در اوایل توسعه نظریه اعداد، متوجه شد که حلقه اعداد صحیح دارای ویژگی های مشترک زیادی با حلقه چند جمله ای در یک میدان محدود است. بخش اول این کتاب با ارائه مشابهی از قضایای مختلف این رابطه را نشان می دهد. فصول بعدی قیاس بین فیلدهای تابع کلی و فیلدهای عدد جبری را بررسی می کنند. موضوعات شامل ماژول های ABC-conjecture، Brumer-Stark conjecture و Drinfeld است.
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Content: Preface --
1. Polynomials over finite fields --
2. Primes, Arithmetic functions, and the zeta function --
3. The reciprocity law --
4. Dirichlet L-series and primes in an arithmetic progression --
5. Algebraic function fields and global function fields --
6. Weil differentials and the canonical class --
7. Extensions of function fields, Riemann-Hurwitz, and the ABC theorem --
8. Constant field extensions --
9. Galois extensions : Hecke and Artin L-series --
10. Artin's primitive root conjecture --
11. The behavior of the class group in constant field extensions --
12. Cyclotomic function fields --
13. Drinfeld modules : an introduction --
14. S-units, S-class group, and the corresponding L-functions --
15. The Brumer-Stark conjecture --
16. The class number formulas in quadratic and cyclotomic function fields --
17. Average value theorems in function fields --
Appendix. A proof of the function field Riemann hypothesis.