ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nuclear Systems, Vol. 1: Thermal Hydraulic Fundamentals

دانلود کتاب Nuclear Systems، Vol. 1: مبانی هیدرولیک حرارتی

Nuclear Systems, Vol. 1: Thermal Hydraulic Fundamentals

مشخصات کتاب

Nuclear Systems, Vol. 1: Thermal Hydraulic Fundamentals

ویرایش: [3 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781351030472, 1351030485 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: [927] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 46,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nuclear Systems, Vol. 1: Thermal Hydraulic Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Nuclear Systems، Vol. 1: مبانی هیدرولیک حرارتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Nuclear Systems، Vol. 1: مبانی هیدرولیک حرارتی

سیستم های هسته ای، جلد اول: مبانی هیدرولیک حرارتی، ویرایش سوم، مقدمه ای عمیق از انرژی هسته ای، با تمرکز بر طراحی هیدرولیک حرارتی و تجزیه و تحلیل هسته هسته ای و سایر اجزای کلیدی نیروگاه هسته ای ارائه می دهد. نویسندگان بر ادغام جریان سیال و انتقال گرما همانطور که برای همه انواع راکتورهای قدرت و توزیع منبع انرژی اعمال می‌شود، تاکید می‌کنند. آنها مفاهیم و سیستم های راکتور هسته ای، از جمله راکتورهای GEN III+، GEN IV، و SMR و چرخه های قدرت جدید را پوشش می دهند. این متن شامل مثال‌ها و مسائل فصل جدید با استفاده از پارامترهای مفهومی، متن و هنر تمام رنگی، برنامه‌های کامپیوتری، اسلایدهای شکل و راهنمای راه‌حل است. ویژگی ها پوشش دقیق مبانی تولید انرژی هسته ای شرح و تجزیه و تحلیل جدیدترین طرح ها و فناوری های نیروگاه هسته ای نمونه های گسترده در هر فصل برای نشان دادن روش های تجزیه و تحلیل ارائه شده است. جریان سیال و انتقال حرارت همانطور که در خنک کننده های تک فاز و دو فاز اعمال می شود خوانندگان دانش و مهارت های طراحی مورد نیاز برای بهبود نسل بعدی راکتورهای هسته ای را توسعه خواهند داد.


توضیحاتی درمورد کتاب به خارجی

Nuclear Systems, Volume I: Thermal Hydraulic Fundamentals, Third Edition, provides an in-depth introduction to nuclear power, focusing on thermal hydraulic design and analysis of the nuclear core and other key nuclear plant components. The authors stress the integration of fluid flow and heat transfer as applied to all power reactor types and energy source distribution. They cover nuclear reactor concepts and systems, including GEN III+, GEN IV, and SMR reactors and new power cycles. The text includes new chapter examples and problems using concept parameters, full-color text and art, computer programs, figure slides, and a solutions manual. FEATURES Rigorous coverage of nuclear power generation fundamentals Description and analysis of the latest nuclear power plant designs and technologies Extensive examples in each chapter to illustrate the analysis methods which have been presented New full-color art and text features to enhance the presentation of topics Integration of fluid flow and heat transfer as applied to single- and two-phase coolants Readers will develop the knowledge and design skills needed to improve the next generation of nuclear reactors.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface to the Third Edition
Preface to the First Edition
Acknowledgments
Authors
Chapter 1 Principal Characteristics of Power Reactors
	1.1 Introduction
	1.2 Power Cycles
	1.3 Primary Coolant Systems
	1.4 Reactor Cores
	1.5 Fuel Assemblies
		1.5.1 LWR Fuel Bundles: Square Arrays
		1.5.2 PHWR and AGR Fuel Bundles: Mixed Arrays
		1.5.3 SFR Fuel Bundles: Hexagonal Arrays
	1.6 Advanced Water- and Gas-Cooled Reactors (Generations III and III+)
	1.7 Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV)
	1.8 Small Modular Reactors
	Problems
	References
Chapter 2 Thermal Design Principles and Application
	2.1 Introduction
	2.2 Overall Plant Characteristics Influenced by Thermal Hydraulic Considerations
	2.3 Energy Production and Transfer Parameters
	2.4 Thermal Design Limits
		2.4.1 Fuel Pins with Metallic Cladding
		2.4.2 Graphite-Coated Fuel Particles
	2.5 Thermal Design Margin
	2.6 Figures of Merit for Core Thermal Performance
		2.6.1 Power Density
		2.6.2 Specific Power
		2.6.3 Power Density and Specific Power Relationship
		2.6.4 Specific Power in Terms of Fuel Cycle Operational Parameters
	2.7 The Inverted Fuel Array
	2.8 The Equivalent Annulus Approximation
	Problems
	References
Chapter 3 Reactor Energy Distribution
	3.1 Introduction
	3.2 Energy Generation and Deposition
		3.2.1 Forms of Energy Generation
		3.2.2 Energy Deposition
	3.3 Fission Power and Calorimetric (Core Thermal) Power
	3.4 Energy Generation Parameters
		3.4.1 Energy Generation and Neutron Flux in Thermal Reactors
		3.4.2 Relation between Heat Flux, Volumetric Energy Generation and Core Power
			3.4.2.1 Single Pin Parameters
			3.4.2.2 Core Power and Fuel Pin Parameters
	3.5 Power Profiles in Reactor Cores
		3.5.1 Homogeneous Unreflected Core
		3.5.2 Homogeneous Core with Reflector
		3.5.3 Heterogeneous Core
		3.5.4 Effect of Control Rods
	3.6 Energy Generation Rate within a Fuel Pin
		3.6.1 Fuel Pins of Thermal Reactors
		3.6.2 Fuel Pins of Fast Reactors
	3.7 Energy Deposition Rate within the Moderator
	3.8 Energy Deposition in the Structure
		3.8.1 γ-Ray Absorption
		3.8.2 Neutron Slowing Down
	3.9 Decay Energy during Operation and Post Shutdown
		3.9.1 Fission Power by Delayed Neutron after Reactivity Insertion
		3.9.2 Power from Fission Product Decay
		3.9.3 ANS Standard Decay Power
			3.9.3.1 UO[sub(2)] in Light Water Reactors
			3.9.3.2 Alternative Fuels in Light Water and Fast Reactors
	3.10 Stored Energy Sources
		3.10.1 The Zircaloy−Water Reaction
		3.10.2 The Sodium−Water Reaction
		3.10.3 The Sodium–Carbon Dioxide Reaction
		3.10.4 The Corium–Concrete Interaction
	Problems
	References
Chapter 4 Transport Equations for Single-Phase Flow
	4.1 Introduction
		4.1.1 Equation Forms
		4.1.2 Intensive and Extensive Properties
	4.2 Mathematical Relations
		4.2.1 Time and Spatial Derivatives
		4.2.2 Gauss’s Divergence Theorem
		4.2.3 Leibnitz’s Rules
	4.3 Integral Lumped Parameter Approach
		4.3.1 Control Mass Formulation
			4.3.1.1 Mass
			4.3.1.2 Momentum
			4.3.1.3 Energy
			4.3.1.4 Entropy
		4.3.2 Control Volume Formulation
			4.3.2.1 Mass
			4.3.2.2 Momentum
			4.3.2.3 Energy
			4.3.2.4 Entropy
	4.4 Integral Distributed Parameter Approach
	4.5 Differential Conservation Equation Approach
		4.5.1 Conservation of Mass
		4.5.2 Conservation of Momentum
		4.5.3 Conservation of Energy
			4.5.3.1 Stagnation Internal Energy Equation
			4.5.3.2 Stagnation Enthalpy Equation
			4.5.3.3 Kinetic Energy Equation
			4.5.3.4 Thermodynamic Energy Equations
			4.5.3.5 Special Forms
		4.5.4 Summary of Equations
	4.6 Turbulent Flow
	Problems
	References
Chapter 5 Transport Equations for Two-Phase Flow
	5.1 Introduction
		5.1.1 Macroscopic versus Microscopic Information
		5.1.2 Multicomponent versus Multiphase Systems
	5.1.3 Mixture versus Multi fluid Models
	5.2 Averaging Operators for Two-Phase Flow
		5.2.1 Phase Density Function
		5.2.2 Volume-Averaging Operators
		5.2.3 Area-Averaging Operators
		5.2.4 Local Time-Averaging Operators
		5.2.5 Commutativity of Space- and Time-Averaging Operations
	5.3 Volume-Averaged Properties
		5.3.1 Void Fraction
			5.3.1.1 Instantaneous Space-Averaged Void Fraction
			5.3.1.2 Local Time-Averaged Void Fraction
			5.3.1.3 Space- and Time-Averaged Void Fraction
		5.3.2 Volumetric Phase Averaging
			5.3.2.1 Instantaneous Volumetric Phase Averaging
			5.3.2.2 Time Averaging of Volume-Averaged Quantities
		5.3.3 Static Quality
		5.3.4 Mixture Density
	5.4 Area-Averaged Properties
		5.4.1 Area-Averaged Phase Fraction
		5.4.2 Flow Quality
		5.4.3 Mass Fluxes
		5.4.4 Volumetric Fluxes and Flow Rates
		5.4.5 Velocity (Slip) Ratio
		5.4.6 Mixture Density over an Area
		5.4.7 Volumetric Flow Ratio
		5.4.8 Flow Thermodynamic Quality
		5.4.9 Summary of Useful Relations for One-Dimensional Flow
	5.5 Mixture Equations for One-Dimensional Flow
		5.5.1 Mass Continuity Equation
		5.5.2 Momentum Equation
		5.5.3 Energy Equation
	5.6 Control-Volume Integral Transport Equations
		5.6.1 Mass Balance
			5.6.1.1 Mass Balance for Volume V[sub(k)]
			5.6.1.2 Mass Balance in the Entire Volume V
			5.6.1.3 Interfacial Jump Condition
			5.6.1.4 Simplified Form of the Mixture Equation
		5.6.2 Momentum Balance
			5.6.2.1 Momentum Balance for Volume V[sub(k)]
			5.6.2.2 Momentum Balance in the Entire Volume V
			5.6.2.3 Interfacial Jump Condition
			5.6.2.4 Common Assumptions
			5.6.2.5 Simplified Forms of the Mixture Equation
		5.6.3 Energy Balance
			5.6.3.1 Energy Balance for Volume V[sub(k)]
			5.6.3.2 Energy Equations for Total Volume V
			5.6.3.3 Jump Condition
	5.7 One-Dimensional Space-Averaged Transport Equations
		5.7.1 Mass Equations
		5.7.2 Momentum Equations
		5.7.3 Energy Equations
	Problems
	References
Chapter 6 Thermodynamics of Nuclear Energy Conversion Systems—Nonflow and Steady Flow: Applications of the First and Second Law of Thermodynamics
	6.1 Introduction
	6.2 Nonflow Process
		6.2.1 A Fuel–Coolant Thermal Interaction
			6.2.1.1 Step I: Coolant and Fuel Equilibration at Constant Volume
			6.2.1.2 Step II-A: Coolant and Fuel Expanded as Two Independent Systems, Isentropically
			6.2.1.3 Step II-B: Coolant and Fuel Expanded as One System in Thermal Equilibrium, Isentropically
	6.3 Thermodynamic Analysis of Nuclear Power Plants
	6.4 Thermodynamic Analysis of a Simplified PWR System
		6.4.1 First Law Analysis of a Simplified PWR System
		6.4.2 Combined First and Second Law or Availability Analysis of a Simplified PWR System
			6.4.2.1 Turbine and Pump
			6.4.2.2 Steam Generator and Condenser
			6.4.2.3 Reactor Irreversibility
			6.4.2.4 Plant Irreversibility
	6.5 More Complex Rankine Cycles: Superheat, Reheat, Regeneration and Moisture Separation
	6.6 Simple Brayton Cycle
	6.7 More Complex Brayton Cycles
	6.8 Supercritical Carbon Dioxide Brayton Cycles
		6.8.1 Simple S-CO[sub(2)] Brayton Cycle
		6.8.2 S-CO[sub(2)] Brayton Cycle with Ideal Components and Regeneration
		6.8.3 S-CO[sub(2)] Recompression Brayton Cycle with Ideal Components
		6.8.4 S-CO[sub(2)] Recompression Brayton Cycle with Real Components and Pressure Losses
	Problems
	References
Chapter 7 Thermodynamics of Nuclear Energy Conversion Systems— Nonsteady Flow First Law Analysis
	7.1 Introduction
	7.2 Containment Pressurization Process
		7.2.1 Analysis of Transient Conditions
			7.2.1.1 Control Mass Approach
			7.2.1.2 Control Volume Approach
		7.2.2 Analysis of Final Equilibrium Pressure Conditions
			7.2.2.1 Control Mass Approach
			7.2.2.2 Control Volume Approach
			7.2.2.3 Governing Equations for Determination of Final Conditions
			7.2.2.4 Individual Cases
	7.3 Response of a PWR Pressurizer to Load Changes
		7.3.1 Equilibrium Single-Region Formulation
		7.3.2 Analysis of Final Equilibrium Pressure Conditions
	Problems
Chapter 8 Thermal Analysis of Fuel Elements
	8.1 Introduction
	8.2 Heat Conduction in Fuel Elements
		8.2.1 General Equation of Heat Conduction
		8.2.2 Thermal Conductivity Approximations
	8.3 Thermal Properties of UO[sub(2)] and MOX
		8.3.1 Thermal Conductivity
			8.3.1.1 Temperature Effects
			8.3.1.2 Porosity (Density) Effects
			8.3.1.3 Oxygen-to-Metal Atomic Ratio
			8.3.1.4 Plutonium Content
			8.3.1.5 Effects of Pellet Cracking
			8.3.1.6 Burnup
		8.3.2 Fission Gas Release
		8.3.3 Melting Point
		8.3.4 Specific Heat
		8.3.5 The Rim Effect
	8.4 Temperature Distribution in Plate Fuel Elements
		8.4.1 Heat Conduction in Fuel
		8.4.2 Heat Conduction in Cladding
		8.4.3 Thermal Resistances
		8.4.4 Conditions for Symmetric Temperature Distributions
	8.5 Temperature Distribution in Cylindrical Fuel Pins
		8.5.1 General Conduction Equation for Cylindrical Geometry
		8.5.2 Solid Fuel Pellet
		8.5.3 Annular Fuel Pellet (Cooled Only on the Outside Surface R[sub(fo)])
		8.5.4 Annular Fuel Pellet (Cooled on Both Surfaces)
		8.5.5 Solid versus Annular Pellet Performance
		8.5.6 Annular Fuel Pellet (Cooled Only on the Inside Surface R[sub(v)])
	8.6 Temperature Distribution in Restructured Fuel Elements
		8.6.1 Mass Balance
		8.6.2 Power Density Relations
		8.6.3 Heat Conduction in Zone 3
		8.6.4 Heat Conduction in Zone 2
		8.6.5 Heat Conduction in Zone 1
		8.6.6 Solution of the Pellet Problem
		8.6.7 Two-Zone Sintering
		8.6.8 Design Implications of Restructured Fuel
	8.7 Thermal Resistance between the Fuel and Coolant
		8.7.1 Gap Conductance Models
			8.7.1.1 As-Fabricated Gap
			8.7.1.2 Gap Closure Effects
		8.7.2 Cladding Corrosion: Oxide Film Buildup and Hydrogen Consequences
		8.7.3 Overall Thermal Resistance
	Problems
	References
Chapter 9 Single-Phase Fluid Mechanics
	9.1 Approach to Simplified Flow Analysis
		9.1.1 Solution of the Flow Field Problem
		9.1.2 Possible Simplifications
	9.2 Inviscid Flow
		9.2.1 Dynamics of Inviscid Flow
		9.2.2 Bernoulli’s Integral
			9.2.2.1 Time-Dependent Flow-General
			9.2.2.2 Steady-State Flow
		9.2.3 Compressible Inviscid Flow
			9.2.3.1 Flow in a Constant-Area Duct
			9.2.3.2 Flow through a Sudden Expansion or Contraction
	9.3 Viscous Flow
		9.3.1 Viscosity Fundamentals
		9.3.2 Viscosity Changes with Temperature and Pressure
		9.3.3 Boundary Layer
		9.3.4 Turbulence
		9.3.5 Dimensionless Analysis
		9.3.6 Pressure Drop in Channels
		9.3.7 Summary of Pressure Changes in Inviscid/Viscid and in Compressible/Incompressible Flows
	9.4 Laminar Flow inside a Channel
		9.4.1 Fully Developed Laminar Flow in a Circular Tube
		9.4.2 Fully Developed Laminar Flow in Noncircular Geometries
		9.4.3 Laminar Developing Flow Length
		9.4.4 Form Losses in Laminar Flow
	9.5 Turbulent Flow inside a Channel
		9.5.1 Turbulent Diffusivity
		9.5.2 Turbulent Velocity Distribution
		9.5.3 Turbulent Friction Factors in Adiabatic and Diabatic Flows
			9.5.3.1 Turbulent Friction Factor: Adiabatic Flow
			9.5.3.2 Turbulent Friction Factor: Diabatic Flow
		9.5.4 Fully Developed Turbulent Flow with Noncircular Geometries
		9.5.5 Turbulent Developing Flow Length
		9.5.6 Turbulent Friction Factors—Geometries for Enhanced Heat Transfer
			9.5.6.1 Extended Surfaces
			9.5.6.2 Twisted Tape Inserts
		9.5.7 Turbulent Form Losses
	9.6 Pressure Drop in Rod Bundles
		9.6.1 Friction Loss along Bare Rod Bundles
			9.6.1.1 Laminar Flow
			9.6.1.2 Turbulent Flow
		9.6.2 Pressure Loss at Fuel Pin Spacer and Support Structures
			9.6.2.1 Grid Spacers
			9.6.2.2 Wire Wrap Spacers
			9.6.2.3 Grid versus Wire Wrap Pressure Loss
		9.6.3 Pressure Loss for Cross Flow
			9.6.3.1 Across Bare Rod Arrays
			9.6.3.2 Across Wire-Wrapped Rod Bundles
		9.6.4 Form Losses for Abrupt Area Changes
			9.6.4.1 Method of Calculation
			9.6.4.2 Loss Coefficient Values
	Problems
	References
Chapter 10 Single-Phase Heat Transfer
	10.1 Fundamentals of Heat Transfer Analysis
		10.1.1 Objectives of the Analysis
		10.1.2 Approximations to the Energy Equation
		10.1.3 Dimensional Analysis
		10.1.4 Thermal Conductivity
		10.1.5 Engineering Approach to Heat Transfer Analysis
	10.2 Laminar Heat Transfer in a Pipe
		10.2.1 Fully Developed Flow in a Circular Tube
		10.2.2 Developed Flow in Other Geometries
		10.2.3 Developing Laminar Flow Region
	10.3 Turbulent Heat Transfer: Mixing Length Approach
		10.3.1 Equations for Turbulent Flow in Circular Coordinates
		10.3.2 Relation between ε[sub(M)],ε[sub(H)] and Mixing Lengths
		10.3.3 Turbulent Temperature Profile
	10.4 Turbulent Heat Transfer: Differential Approach
		10.4.1 Basic Models
		10.4.2 Transport Equations for the k[sub(T)]−ε[sub(T)] Model
		10.4.3 One-Equation Model
		10.4.4 Effect of Turbulence on the Energy Equation
		10.4.5 Summary
	10.5 Heat Transfer Correlations in Turbulent Flow
		10.5.1 Nonmetallic Fluids—Smooth Heat Transfer Surfaces
			10.5.1.1 Fully Developed Turbulent Flow
			10.5.1.2 Entrance Region Effect
		10.5.2 Nonmetallic Fluids—Geometries for Enhanced Heat Transfer
			10.5.2.1 Ribbed Surfaces
			10.5.2.2 Twisted Tape Inserts
		10.5.3 Metallic Fluids—Smooth Heat Transfer Surfaces: Fully Developed Flow
			10.5.3.1 Circular Tube
			10.5.3.2 Parallel Plates
			10.5.3.3 Concentric Annuli
			10.5.3.4 Rod Bundles
	Problems
	References
Chapter 11 Two-Phase Flow Dynamics
	11.1 Introduction
	11.2 Flow Regimes
		11.2.1 Regime Identicat fi ion
		11.2.2 Flow Regime Maps
			11.2.2.1 Vertical Flow
			11.2.2.2 Horizontal Flow
		11.2.3 Flooding and Flow Reversal
	11.3 Flow Models
	11.4 Overview of Void Fraction and Pressure Loss Correlations
	11.5 Void Fraction Correlations
		11.5.1 The Fundamental Void Fraction-Quality-Slip Relation
		11.5.2 Homogeneous Equilibrium Model
		11.5.3 Drift Flux Model
		11.5.4 Chexal and Lellouche Correlation
		11.5.5 Premoli Correlation
		11.5.6 Bestion Correlation
	11.6 Pressure–Drop Relations
		11.6.1 The Acceleration, Friction and Gravity Components
		11.6.2 Homogeneous Equilibrium Models
		11.6.3 Separate Flow Models
			11.6.3.1 Lockhart–Martinelli Correlation
			11.6.3.2 Thom Correlation
			11.6.3.3 Baroczy Correlation
			11.6.3.4 Friedel Correlation
		11.6.4 Two-Phase Pressure Drop
			11.6.4.1 Pressure Drop for Zero Inlet Quality x= 0
			11.6.4.2 Pressure Drop for Nonzero Inlet Quality
		11.6.5 Relative Accuracy of Various Friction Pressure Loss Models
		11.6.6 Pressure Losses across Singularities
	11.7 Critical Flow
		11.7.1 Background
		11.7.2 Single-Phase Critical Flow
		11.7.3 Two-Phase Critical Flow
			11.7.3.1 Thermal Equilibrium Models
			11.7.3.2 Thermal Nonequilibrium Models
			11.7.3.3 Practical Guidelines for Calculations
	11.8 Two-Phase Flow Instabilities in Nuclear Systems
		11.8.1 Thermal-Hydraulic Instabilities
			11.8.1.1 Ledinegg Instabilities
			11.8.1.2 Density Wave Oscillations
		11.8.2 Thermal-Hydraulic Instabilities with Neutronics Feedback
	Problems
	References
Chapter 12 Pool Boiling
	12.1 Introduction
	12.2 Nucleation
		12.2.1 Equilibrium Bubble Radius
		12.2.2 Homogeneous and Heterogeneous Nucleation
		12.2.3 Vapor Trapping and Retention
		12.2.4 Vapor Growth from Microcavities
		12.2.5 Bubble Dynamics—Growth and Detachment
		12.2.6 Nucleation Summary
	12.3 The Pool Boiling Curve
	12.4 Heat Transfer Regimes
		12.4.1 Nucleate Boiling Heat Transfer (between Points B–C of the Boiling Curve of Figure 12.8)
		12.4.2 Transition Boiling (between Points C–D of the Boiling Curve of Figure 12.8)
		12.4.3 Film Boiling (between Points D–F of the Boiling Curve of Figure 12.8)
	12.5 Limiting Conditions on the Boiling Curve
		12.5.1 Critical Heat Flux (Point C of the Boiling Curve of Figure 12.8)
		12.5.2 Minimum Stable Film Boiling Temperature (Point D of the Boiling Curve of Figure 12.8)
	12.6 Surface Effects in Pool Boiling
	12.7 Condensation Heat Transfer
		12.7.1 Filmwise Condensation
			12.7.1.1 Condensation on a Vertical Wall
			12.7.1.2 Condensation on or in a Tube
		12.7.2 Dropwise Condensation
		12.7.3 The Effect of Noncondensable Gases
	Problems
	References
Chapter 13 Flow Boiling
	13.1 Introduction
	13.2 Heat Transfer Regions and Void Fraction/Quality Development
		13.2.1 Heat Transfer Regions
			13.2.1.1 Onset of Nucleate Boiling, Z[sub(ONB)]
			13.2.1.2 Net Vapor Generation Point, Z[sub(NVG)]
			13.2.1.3 Onset of Saturated Boiling, Z[sub(OSB)]
			13.2.1.4 Location of Thermal Equilibrium, Z[sub(E)]
			13.2.1.5 Void Fraction Profile, α(z)
	13.3 Heat Transfer Coefficient Correlations
		13.3.1 Correlations for Saturated Boiling
			13.3.1.1 Early Correlations
			13.3.1.2 Chen Correlation
			13.3.1.3 Kandlikar Correlation
		13.3.2 Correlations Applicable to Both Subcooled and Saturated Boiling
			13.3.2.1 Early Correlations
			13.3.2.2 Bjorge, Hall and Rohsenow Correlation
		13.3.3 Correlations for Subcooled Boiling Only
			13.3.3.1 Modification of the Chen Correlation
			13.3.3.2 Kandlikar Correlation
		13.3.4 Post-CHF Heat Transfer
			13.3.4.1 Both Film Boiling Regimes (Inverted and Dispersed Annular Flow)
			13.3.4.2 Inverted Annular Flow Film Boiling (Only)
			13.3.4.3 Dispersed Annular or Liquid Deficient Flow Film Boiling (Only)
			13.3.4.4 Transition Boiling
		13.3.5 Reflooding of a Core Which Has Been Uncovered
	13.4 Critical Condition or Boiling Crisis
		13.4.1 Critical Condition Mechanisms and Limiting Values
		13.4.2 The Critical Condition Mechanisms
			13.4.2.1 Models for DNB
			13.4.2.2 Model for Dryout
			13.4.2.3 Variation of the Critical Condition with Key Parameters
		13.4.3 Correlations for the Critical Condition
			13.4.3.1 Correlations for Tube Geometry
			13.4.3.2 Correlations for Rod Bundle Geometry
		13.4.4 Design Margin in Critical Condition Correlation
			13.4.4.1 Characterization of the Critical Condition
			13.4.4.2 Margin to the Critical Condition
			13.4.4.3 Comparison of Various Correlations
			13.4.4.4 Design Considerations
	Problems
	References
Chapter 14 Single Heated Channel: Steady-State Analysis
	14.1 Introduction
	14.2 Formulation of One-Dimensional Flow Equations
		14.2.1 Nonuniform Velocities
		14.2.2 Uniform and Equal Phase Velocities
	14.3 Delineation of Behavior Modes
	14.4 The LWR Cases Analyzed in Subsequent Sections
	14.5 Steady-State Single-Phase Flow in a Heated Channel
		14.5.1 Solution of the Energy Equation for a Single-Phase Coolant and Fuel Rod (PWR Case)
			14.5.1.1 Coolant Temperature
			14.5.1.2 Cladding Temperature
			14.5.1.3 Fuel Centerline Temperature
		14.5.2 Solution of the Energy Equation for a Single-Phase Coolant with Roughened Cladding Surface (Gas Fast Reactor)
		14.5.3 Solution of the Momentum Equation to Obtain Single-Phase Pressure Drop
	14.6 Heat Transfer and Associated Flow Condition Regions Which Can Exist in a Boiling Channel
	14.7 Steady-State Two-Phase Flow in a Heated Channel under Fully Equilibrium (Thermal and Mechanical) Conditions
		14.7.1 Solution of the Energy Equation for Two-Phase Flow (BWR Case with Single-Phase Entry Region)
		14.7.2 Solution of the Momentum Equation for Fully Equilibrium Two-Phase Flow Conditions to Obtain Channel Pressure Drop (BWR Case with Single-Phase Entry Region)
			14.7.2.1 P[sub(acc)]
			14.7.2.2 P[sub(grav)]
			14.7.2.3 P[sub(fric)]
			14.7.2.4 P[sub(form)]
	14.8 Steady-State Two-Phase Flow in a Heated Channel under Nonequilibrium Conditions
		14.8.1 Solution of the Energy Equation for Nonequilibrium Conditions (BWR and PWR Cases)
			14.8.1.1 Prescribed Wall Heat Flux
			14.8.1.2 Prescribed Coolant Temperature
		14.8.2 Solution of the Momentum Equation for Channel Nonequilibrium Conditions to Obtain Pressure Drop (BWR Case)
	Problems
	References
Appendix A: Selected Nomenclature
Appendix B: Physical and Mathematical Constants
Appendix C: Unit Systems
Appendix D: Mathematical Tables
Appendix E: Thermodynamic Properties
Appendix F: Thermophysical Properties of Some Substances
Appendix G: Dimensionless Groups of Fluid Mechanics and Heat Transfer
Appendix H: Multiplying Prefixes
Appendix I: List of Elements
Appendix J: Square and Hexagonal Rod Array Dimensions
Appendix K: Parameters for Typical BWR-5 and PWR Reactors
Appendix L: Acronyms and Abbreviations
Index




نظرات کاربران