دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Amritanshu Shukla
سری:
ISBN (شابک) : 9780367256104, 9780429288647
ناشر:
سال نشر:
تعداد صفحات: 417
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Nuclear Structure Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک ساختار هسته ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors 1 Magic Numbers of Cylindrical Symmetry 1.1 Introduction 1.2 The Origin of QQ Interaction 1.3 The Nilsson Model 1.3.1 The Nilsson Basis 1.4 The Elliott SU(3) 1.4.1 Derivation of the Highest Weight Irrep 1.4.2 The Collective Operators 1.4.3 The SU(3) →SU(2) × U(1) Decomposition 1.5 Proxy-SU(3) Symmetry 1.5.1 The Exact Symmetry Behind Proxy-SU(3) 1.6 Magic Numbers Below 28 1.7 Magic Numbers → Shape Coexistence → Inversion of States 1.8 Conclusions Acknowledgements References 2 Skyrme and Relativistic Mean-Field Models in the Description of Symmetric, Asymmetric, and Stellar Nuclear Matter 2.1 Introduction 2.2 Relativistic Mean-Field Models 2.2.1 Finite Range Model Description 2.2.2 Energy Density and Pressure 2.2.3 Incompressibility 2.2.4 Chemical Potentials 2.2.5 Symmetry Energy and Its Derivatives 2.2.6 Neutron Star Environment 2.2.7 Other Kind of Models 2.3 The Skyrme Interaction 2.3.1 Nuclear Matter 2.3.2 Incompressibility and the Three-Body Force 2.3.3 Full-Skyrme Equation of State for Symmetric Nuclear Matter 2.3.4 Asymmetric Nuclear Matter 2.3.5 Neutron Star Environments 2.3.6 Beyond the Standard Skyrme Model 2.4 Conclusion Acknowledgements References 3 Recent Parameterization in Relativistic Mean-Field Formalism 3.1 Introduction 3.2 The Relativistic Mean-Field Formalism 3.2.1 Finite Nuclei 3.2.2 Infinite Nuclear Matter 3.3 New Parameterization 3.4 Results and Discussions 3.4.1 Finite Nuclei 3.4.1.1 Binding Energy 3.4.1.2 Isotopic Shift 3.4.1.3 Neutron Skin Thickness (ΔR[sub(np)]) 3.4.1.4 Prediction of Magic Number in Superheavy Valley 3.4.2 Infnite Nuclear Matter 3.4.2.1 Equation of State (EOS) for Nuclear Matter 3.4.2.2 Neutron Star 3.4.2.3 Tidal Deformability 3.5 Summary and Conclusions Acknowledgments References 4 Nuclear Symmetry Energy in Finite Nuclei 4.1 Introduction 4.2 Theoretical Formalism 4.2.1 The Key EOS Parameters in Nuclear Matter 4.2.2 Deformed HF+BCS Formalism and HFB Method with Skyrme Forces 4.2.3 The Coherent Density Fluctuation Model (CDFM) 4.2.4 Energy-Density Functionals for Infinite Nuclear Matter 4.2.5 Temperature Dependence of the Symmetry Energy and Relationships Concerning Its Volume and Surface Contributions 4.3 Results and Discussion 4.3.1 Spherical Nuclei: Ni (A=74−84), Sn (A = 124−152), and Pb (A = 202−214) 4.3.2 Deformed Nuclei: Kr (A=82−120) and Sm (A = 140−156) 4.3.3 Neutron-Deficient and Neutron-Rich Mg Isotopes with A = 20–36 4.3.4 Temperature-Dependent Symmetry Energy Coefficient, Densities, Nuclear Radii, and Neutron Skins 4.3.5 Temperature Dependence of the Volume and Surface Components of the Nuclear Symmetry Energy 4.4 Conclusions References 5 Theoretical Description of Low-Energy Nuclear Fusion 5.1 Introduction 5.2 Theoretical Formalisms 5.2.1 Semi-classical Extended Thomas Fermi (ETF) Model 5.2.2 Relativistic Mean-Field Approach 5.2.3 São Paulo Potential 5.2.4 Coupled Channel Approach 5.2.5 The l-Summed Extended Wong Model and Wong Formula 5.3 Results and Discussions 5.3.1 Nuclear Potential from Skyrme Energy Density Formalism 5.3.2 Nuclear Potential from Relativistic Mean-Field Theory 5.3.3 Nuclear Potentials for São Paulo Potential 5.3.4 Various Phenomenological Nuclear Potentials 5.4 Factors Affecting Sub-barrier Fusion 5.4.1 Deformation and Orientation 5.4.2 Surface Energy Constant (Ý) and Angular Momentum (l) 5.4.3 Barrier Modification through a Projectile Breakup 5.5 Fusion Cross Section 5.5.1 Cross Section from Skyrme Energy Density Formalism 5.5.2 Cross Section from Relativistic Mean-Field Theory 5.5.3 Effect of Orientation and Deformation on the Cross Section 5.6 Summary and Conclusions Acknowledgments References 6 Cluster-Decay Model for Hot and Rotating Compound Nuclei 6.1 Introduction 6.2 Methodology 6.2.1 Dynamical Cluster-Decay Model (DCM) 6.3 Results and Discussion 6.3.1 Clustering Effects and Fragmentation in Light-Mass Nuclear Systems 6.3.2 Effect of N/Z Ratio of Nuclear Systems on the Decay Channels 6.3.3 Fusion Cross Sections, Neck-Length Parameter and Predictability of DCM 6.3.3.1 [sup(7)]Li-, [sup(7)]Be-, and [sup(9)]Be-Induced Reactions Leading to A =30–200 6.3.3.2 [sup(20)]Ne-Induced Reactions in Medium-Mass Region 6.4 Summary Acknowledgment References 7 Explorations within the Preformed Cluster Decay Model 7.1 Introduction 7.1.1 Alpha and Cluster Radioactivity 7.1.2 Shell Corrections and Cluster Radioactivity 7.2 The Preformed Cluster Decay Model 7.3 Alpha, Cluster Radioactivity, and Preformed Cluster Decay Model 7.3.1 α-Radioactivity and α-Cluster Preformation Probability P[sub(0)][sup(α)] 7.3.2 Cluster Radioactivity in trans-Pb Region and Effects of Deformation 7.3.3 Shell Correction and Cluster Radioactivity 7.4 Conclusions Acknowledgments Bibliography 8 Studies on Synthesis and Decay of Superheavy Elements with Z = 122 8.1 Introduction 8.2 Phenomenological Model for Production Cross Section (PMPC) 8.3 Results and Discussion 8.4 Conclusions References 9 Decay Dynamics of Ground- and Excited-State Nuclear Systems Using Collective Clusterization Approach 9.1 Introduction 9.2 Collective Clusterization Method (CCM) for Ground- and Excited-State Decays 9.2.1 Dynamical (or Quantum Mechanical) Fragmentation Theory 9.2.2 Preformed Cluster Decay Model (PCM) for Ground-State Emission Channels 9.2.2.1 Application of Preformed Cluster Decay Model (PCM) for Ground-State Decays 9.2.3 Dynamical Cluster Decay Model (DCM) for Excited-State Emissions 9.2.3.1 Dynamics of Compound Nuclei Formed in Heavy-Ion-Induced Reactions 9.3 Summary and Outlook Acknowledgments References 10 Spectroscopic Properties of Nuclei in Generalized Seniority Scheme 10.1 Introduction 10.2 Pairing Operators 10.3 Pairing in Quasi-spin Scheme: Seniority 10.4 Generalized Seniority 10.5 Seniority Isomerism 10.6 Summary Acknowledgment Appendix: Quasi-Spin Algebra References 11 Nuclear High-Spin Spectroscopy in the A ∼ 60 Mass Region 11.1 Introduction 11.1.1 Shape Coexistence 11.1.2 Band Termination 11.1.3 Superdeformation 11.1.4 Interesting Facts in the A ∼ 60 Mass Region 11.1.5 Why Cranking Model Is Good at High Spin in the A ∼ 60 Mass Region 11.2 Cranked Nilsson–Strutinsky (CNS) Model 11.2.1 Nilsson Model 11.2.2 Cranking Model 11.2.3 Cranked Nilsson–Strutinsky (CNS) 11.3 Results on Few Nuclei 11.3.1 Ni[sup(60)] 11.3.2 Cu[sup(59)] 11.3.3 Zn[sup(61)] 11.3.4 Zn[sup(62)] 11.4 Configuration Assignment on Superdeformed Bands 11.5 New Nilsson Parameters 11.5.1 Results with the New Nilsson Parameters 11.6 Conclusion References 12 Nuclear Structure Aspects of Bubble Nuclei 12.1 Introduction 12.2 Bubble Effect in Light- and Medium-Mass Nuclei 12.3 Bubble Effect in Superheavy Nuclei 12.4 Roles of Tensor Forces, Pairing, and Deformation in Bubble Nuclei 12.5 Roles of Shell Gaps and Spin-Orbit Splitting in the Formation of Bubble Nuclei 12.6 Anti-bubble Effect in Magic Nuclei 12.7 Summary and Conclusion Acknowledgments References 13 Correlation of Nuclear Structure Observable with the Nuclear Reaction Measurable in the Aspect of Astrophysical P-Process 13.1 Introduction 13.1.1 Nucleosynthesis: What Is the Origin of Chemical Elements? How Are They Formed? 13.1.1.1 Nucleosynthesis of Elements Z > 26 13.1.2 Abundance of Elements 13.1.3 Theoretical Research Advancements in the Study of P-Process 13.2 Formalism 13.2.1 Nuclear Structure Formalism 13.2.2 Pairing Approach in RMF 13.2.3 RMF Parametrization 13.2.4 Nuclear Reaction Formalism 13.2.4.1 Reaction Cross Section 13.3 Results and Discussion 13.3.1 Ground-State Properties: Nuclear Densities, Binding Energy, rms Matter Radii, and rms Charge Radii 13.3.2 The Cross Section of [sup(92,94,98)]Mo (p, γ) [sup(93,95,99)]Tc 13.3.3 Cross Section of [sup(92,94,98)]Mo (α, γ) [sup(96,98,102)]Ru 13.4 Conclusion References 14 Constraining the Nuclear Matter EoS from the Properties of Celestial Objects 14.1 Introduction 14.2 Theoretical Framework 14.2.1 The Relativistic Mean-Field Theory 14.2.2 Skyrme Energy Density Functional 14.2.3 Properties of Nuclear Matter and Tidal Deformability 14.3 Results and Discussions 14.3.1 Nuclear Matter Equation of State 14.3.2 Tidal Deformability 14.4 Conclusions References 15 Weak Interactions and Nuclear Structure 15.1 Introduction: Weak Interactions, Standard Model, and Nuclear Physics 15.2 Beta Decay in Nuclei 15.2.1 Weak Processes in Nuclei 15.2.2 Fermi and Gamow-Teller Transitions 15.2.3 Lifetime in Beta Decay 15.2.4 Briefly about Actual Data 15.2.5 Gamow-Teller Transitions and the Quenching Problem 15.3 Relation to Fundamental Theory 15.3.1 Quark Mixing (CKM) Matrix 15.3.2 Isospin Violation 15.3.3 To the Evaluation of Unitarity 15.4 Weak Interactions and Astrophysics 15.5 Parity Violation 15.5.1 Parity Violation and Neutrino 15.5.2 Mixing of Neutron Resonances 15.5.3 Parity Violation in Fission 15.5.4 The Doorway State Model 15.5.5 Anapole Moment 15.5.6 Parity Violation in Neutral Currents 15.6 Electric Dipole Moment 15.6.1 Possible Nuclear Enhancement of EDM 15.6.2 Schiff Moment 15.6.3 The EDM of [sup(199)] Hg 15.6.4 Rotational Doublets and T-, P-Odd Moments 15.6.5 Enhancement Factors in Pear-Shaped Nuclei 15.6.6 Experiments with Pear-Shaped Nuclei 15.7 Neutrino-Nucleus Reactions 15.7.1 Introduction 15.7.2 Experimental Studies 15.7.3 Theoretical Framework 15.7.4 Random Phase Approximation and the Shell Model Acknowledgments References Index