دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Jörg Florian Friedrich. Jürgen Meichsner سری: ISBN (شابک) : 1119363586, 9781119363583 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 699 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 38 مگابایت
در صورت تبدیل فایل کتاب Nonthermal Plasmas for Materials Processing: Polymer Surface Modification and Plasma Polymerization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلاسماهای غیر حرارتی برای پردازش مواد: اصلاح سطح پلیمری و پلیمریزاسیون پلاسما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب منحصربهفرد جنبههای فیزیکی و شیمیایی شیمی پلاسما با پلیمرها را پوشش میدهد و بینش جدیدی در مورد تعامل فیزیک و شیمی پلاسماهای غیر حرارتی و کاربردهای آنها در علم مواد برای فیزیکدانان و شیمیدانان.
خواص و ویژگی های پلاسما، فرآیندهای اولیه (برخورد) در فاز گاز، برهمکنش های سطحی پلاسما، پلاسماهای تخلیه گاز و منابع پلاسمایی فنی، پلاسماهای جوی، تشخیص پلاسما، پلیمرها و پلاسماها، پلیمریزاسیون پلاسما، فرآیندهای پس از پلاسما، پردازش پلاسما و شیمیایی مرطوب، تولید گروههای عاملی ناشی از پلاسما و واکنشهای شیمیایی روی این گروهها به همراه چند کاربرد نمونه در این مقاله مورد بحث قرار گرفتهاند. این کتاب جامع اما فشرده پیشرفته در مورد شیمی پلاسما و وابستگی آن به فیزیک پلاسما است.
در حالی که فیزیک پلاسما، شیمی پلاسما، و علم پلیمر اغلب به طور جداگانه مورد بررسی قرار می گیرند، هدف نویسندگان این است که به طور هماهنگ به فیزیک و شیمی فشار کم و فشار اتمسفر بپیوندند. پلاسما با شیمی سطح پلیمر و پلیمریزاسیون و مقایسه چنین شیمی با شیمی کلاسیک.
خوانندگان در این فصل ها
مخاطبان
فیزیکدانان، شیمیدانان پلیمر، دانشمندان مواد، مهندسین صنایع در زیست پزشکی ، پوشش ها، چاپ و غیره.
This unique book covers the physical and chemical aspects of plasma chemistry with polymers and gives new insights into the interaction of physics and chemistry of nonthermal plasmas and their applications in materials science for physicists and chemists.
The properties and characteristics of plasmas, elementary (collision) processes in the gas phase, plasma surface interactions, gas discharge plasmas and technical plasma sources, atmospheric plasmas, plasma diagnostics, polymers and plasmas, plasma polymerization, post-plasma processes, plasma, and wet-chemical processing, plasma-induced generation of functional groups, and the chemical reactions on these groups along with a few exemplary applications are discussed in this comprehensive but condensed state-of-the-art book on plasma chemistry and its dependence on plasma physics.
While plasma physics, plasma chemistry, and polymer science are often handled separately, the aim of the authors is to harmoniously join the physics and chemistry of low-pressure and atmospheric-pressure plasmas with polymer surface chemistry and polymerization and to compare such chemistry with classic chemistry.
Readers will find in these chapters
Audience
Physicists, polymer chemists, materials scientists, industrial engineers in biomedicine, coatings, printing, etc.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Introduction References 2 Basic Principles of the Plasma State of Matter 2.1 Characteristics and Physical Properties of Plasmas 2.1.1 Ionization Degree, Energy Content and Classification 2.1.2 Quasi-Neutrality, Debye Shielding Length, Plasma Frequency 2.1.3 Ambipolar Diffusion 2.1.4 High-Frequency Conductivity and Permittivity of Non-Thermal Plasmas 2.1.5 Charged Particles in External Magnetic Field 2.1.6 Thermal and Non-Thermal Plasmas 2.1.7 Plasma Kinetics and Transport Equations References 2.2 Elementary Processes and Collision Cross Section 2.2.1 Classification of Collision Processes in Non-Thermal Plasmas 2.2.2 The Collision Cross Section References 2.3 Interaction of Non-Thermal Plasmas with Condensed Matter 2.3.1 Stationary Plasma Boundary Sheath and Bohm Criterion 2.3.2 Plasma Boundary Sheath in Front of the Floating Surface 2.3.3 Generalized Bohm Sheath Criterion 2.3.4 High-Voltage Plasma Sheath 2.3.5 Non-Stationary Plasma Sheaths References 2.4 Non-Thermal Plasmas of Electric Gas Discharges 2.4.1 Overview 2.4.2 The Electric Breakdown in Gases 2.4.3 The Glow Discharge 2.4.4 Glow Discharges at Harmonic Electric Fields, RF and MW Plasmas 2.4.5 High-Voltage Breakdown at Atmospheric Pressure, Corona and Barrier Discharge References 3 Plasma Diagnostics 3.1 Introduction 3.2 Overview of Diagnostic Methods Used for the Characterization of Non-Thermal Plasmas 3.3 Analysis of Charged and Neutral Plasma Particles in Non-Thermal Plasmas 3.3.1 Electric Probe Measurements 3.3.2 Special Case for Single Electric Probe Measurements in Radio-Frequency (RF) Plasmas 3.4 Microwave Interferometry 3.4.1 Microwave Propagation in Non-Magnetic Plasmas 3.4.2 Heterodyne Microwave Interferometry at 160 GHz 3.4.3 Electron Density Analysis in CCP and ICP with Argon and Oxygen as Processing Gas 3.5 Mass Spectrometry 3.5.1 Principle of Mass Spectrometry 3.5.2 Quadrupole Mass Spectrometry 3.5.3 Analysis of Low-Pressure Plasmas by Quadrupole Mass Spectrometry References 3.6 Plasma and Laser-Induced Optical Emission Spectroscopy 3.6.1 Spectral Analysis of Plasma Emission (VUV, UV-vis-NIR) 3.6.1.1 Optical Emission Spectroscopy (OES) of Low-Pressure Plasmas – Examples 3.6.1.2 Determination of the Rotation Temperature from Atmospheric O₂ A Band, PP and PQ Branch 3.6.1.3 Determination of Ground State Particle Density from Plasma Emission Spectrum 3.6.1.4 Abel Inversion 3.6.1.5 Phase Resolved Optical Emission Spectroscopy (PROES) of RF Plasmas 3.6.2 Laser-Induced Fluorescence (LIF) Spectroscopy 3.7 IR Broadband and IR Laser Absorption Spectroscopy 3.7.1 Fourier Transform Infrared (FTIR) Spectroscopy for Gas Phase Analysis 3.7.1.1 Principle of FTIR Spectroscopy 3.7.1.2 FTIR Gas Phase Spectroscopy of RF Plasma with Precursor Ethylenediamine and Argon 3.7.2 Infrared Tunable Diode Laser Absorption Spectroscopy (IR-TDLAS) 3.7.2.1 Configuration of the IR-TDLAS Experiment 3.7.2.2 Principle Procedure for Measuring Single Absorption Lines 3.7.2.3 IR-TDLAS of Fluorocarbon Radicals and Reaction Products in CF₄ or CF₄+H₂ RF Plasmas References 4 Methods of Polymer and Polymer Surface Analysis 4.1 Introductory Remarks 4.2 Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) 4.3 Secondary Ion Mass Spectrometry 4.4 NEXAFS – Use of Synchrotron Radiation 4.5 Infrared Reflection Absorption Spectroscopy (IRRAS) 4.6 Size-Exclusion Chromatography (SEC)/Gel Permeation Chromatography (GPC) and Field-Flow-Fractionation (FFF) 4.7 Matrix-Assisted Laser/Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) 4.8 Electrospray Ionization Time-of-Flight Mass Spectrometry (ESI-ToF-MS) 4.9 Overview of Methods References 5 Chemical Interactions Between Polymer and Plasma 5.1 Introduction 5.2 General Conflict Between High Plasma Energies and Low Dissociation Energies of Bonds in Polymers 5.3 Chemical Bonds and Functional Groups in Polymers 5.4 Response of Different Types of Polymers to Plasma Exposure References 6 Polymer Surface Functionalization 6.1 Important Properties of Polymers 6.2 Why Pretreatment? 6.3 Chemical and Structural Problems of Polymers Provoked by Plasma Pretreatment 6.4 Inevitability of Simultaneous Functionalization and Polymer Degradation 6.5 Physical and Chemical Attacks of the Plasma to Polyolefin Surfaces 6.6 Chemical Grafting onto Plasma-Exposed Polymer Surfaces 6.7 Oxidation of Polymers by Exposure to the Oxygen Low-Pressure Plasma 6.7.1 Introduction of O-Functional Groups Onto Polymer Surfaces 6.7.2 Nature of Oxygen-Plasma Introduced Functional Groups 6.7.3 Identification of O-Functional Groups Bonded Onto the Topmost Polymer Surface Layer 6.7.4 Fit Strategy of O-Functional Groups as Introduced by D. T. Clark 6.7.5 Other Surface-Sensitive Analytical Methods 6.7.6 Derivatization of O-Functional Groups 6.7.7 Identification of Radicals by Chemical Labeling or ESR Spectroscopy 6.7.8 Physical Characterization of Oxygen Plasma 6.7.9 Use of Plasma Afterglow for Polymer Modification 6.7.10 Surface Oxidation and Etching (see also the special section on etching) 6.7.11 Changes in Supermolecular Structure in Subsurface Layers Upon Exposure to Oxygen Plasma 6.7.12 Changes in Polymer Structure Generated by Exposure to the Vacuum UV Radiation of the Oxygen Plasma 6.7.13 Depth of Modification 6.7.14 Accelerated Artificial Aging of Polymers by Exposure to Low-Pressure Oxygen Plasma 6.7.15 Kinetics of Crosslinking 6.7.16 Time-Dependence of Oxygen Introduction 6.7.17 Reaction Details of Poly(ethylene terephthalate) Upon Exposure to Oxygen Plasma 6.7.18 Optimum Time of Exposure to Oxygen Plasma for Formation of O-Functional Groups and Preventive Avoidance of Structural Degradation and Decomposition 6.7.19 Dependence of Oxygen Introduction on Plasma Parameters 6.7.20 Behavior of Molecular Orientation and Chain Structure Upon Exposure to Oxygen Plasma References 7 Sensitivity of Polymer Units and Functional Groups Towards Exposure to Oxygen Plasma 7.1 Introductory Remarks 7.2 Behavior of Polymer Structure Upon Exposure to Oxygen Plasma 7.3 Etching Behavior of Polymers Upon Exposure to Oxygen Plasma 7.4 Classification of Polymers with Similar Degradation Behavior on Exposure to Oxygen Plasma 7.5 Stability of Surface Functionalization and Superposition with Post-Plasma Effects Upon Exposure to Air 7.6 Surface Oxidation of Polyolefins Using Atmospheric-Pressure Plasmas (DBD, APGD or Corona Discharge, Spark Jet, etc.) 7.6.1 Dielectric Barrier Discharge 7.6.2 Plasma-Assisted and Plasma-Less Spraying of Intact High-Molecular-Weight Polymers at Atmospheric Pressure 7.7 Oxidation of Carbon Nanomaterials 7.7.1 Graphene 7.7.2 Oxidation of Carbon Fibers 7.8 Generation of Monosort O-Functional Groups at Polyolefin Surfaces as Anchor Points for Grafting of Molecules 7.8.1 OH Groups 7.8.2 COOH Groups 7.8.3 CHO Groups 7.8.4 Super-Acidic Groups via Oxyfluorination 7.8.5 Functionalization of Fluorine-Containing Polymers with O-Functional Groups 7.9 Post-Plasma Chemical Grafting of Molecules, Oligomers or Polymers Onto OH-Groups 7.10 Course of Oxidation from Virgin Polymer to Oxidized Polymer and Finally to CO₂ 7.10.1 Problems of Depth Profiling of Oxidation at Polymer Surface 7.10.2 Binding Energies of Covalent Bonds in Polyolefins 7.10.3 Analogy Between Thermal Oxidation and Auto-Oxidation of Paraffins 7.10.4 Decarboxylation and Emission of CO₂ 7.10.5 Formation of Gaseous Low-Molecular-Weight Etch Products by Oxygen Plasma Treatment 7.10.6 Introduction of Oxygen-Containing Groups at Surface of Polyolefins as a Forerunner of Gasification/Etching 7.10.7 Formation and Characterization of Low-Molecular-Weight Oxidized Material (LMWOM) 7.10.8 LMWOM Formation by Re-Deposition of Etched Fragments 7.10.9 Depth Profiling of O/C from Surface to Bulk 7.10.9.1 Angle-Resolved XPS 7.10.9.2 Dynamic SIMS 7.10.9.3 Sputtering 7.10.9.4 Post-Plasma Oxidation 7.10.10 Tentative Mechanism References 8 Ammonia and Bromine Plasmas 8.1 Generation of Monosort NH₂ Groups 8.1.1 Brief History of Plasma-Induced Introduction of Primary Amino Groups Into the Surface of Polyolefins 8.1.2 Ways to Produce Amino Groups at Polymer Surfaces 8.1.3 Ammonia, Nitrogen-Hydrogen and Hydrazine Plasmas 8.1.4 Carbon Fibers Exposed to Ammonia Plasma 8.1.5 Oxygen Post-Plasma Introduction After Ammonia Plasma Exposure 8.1.6 Invalidity of Le Chatelier’s Principle in Low-Pressure Plasma 8.1.7 Time Dependence of N and NH₂ Introduction on Exposure of the Ammonia Plasma into Polyolefin Surfaces 8.1.8 Hydrogenation Effect of NH₃ 8.1.9 Modification of Polyolefin Within a 2µm-Deep Surface Layer 8.1.10 Bulk Analysis by NMR 8.1.11 Summary of All Attempts to Increase the Yield in NH₂ 8.1.12 Ammonia Plasma – Undesired Side and Post-Plasma Reactions 8.1.13 Deposition of Plasma Polymers Carrying Amino Groups as an Alternative to Ammonia Plasma Treatment 8.1.14 Chemical Labeling and Protection of NH₂ Groups 8.1.15 Post-Plasma Chemical Grafting Onto NH₂-Groups 8.1.16 Amino Groups at Polymer Surfaces – A Summary 8.2 Bromine Plasma 8.2.1 Chemical Aspects 8.2.2 Theoretical Considerations of the Plasma Process Using Bromine 8.2.3 Comparison of Halogen Chemistry 8.2.4 Behavior of Plasma-Brominated Surface Layers in Solvents 8.2.5 Plasma Polymerization of Vinyl and Allyl Bromide 8.2.6 Attempts to Increase Br Concentration in the Plasma Polymer Layers by Admixture of Br₂ to Allyl Bromide or Bromoform 8.2.7 Dependence of Bromine Introduction Onto Polyolefin Surfaces on Plasma Parameters 8.2.8 Electron Temperature in the Bromoform Plasma 8.2.9 Yields in Introduction of Other Halogens 8.2.10 Plasma Bromination of Other Polymers 8.2.11 Chemical Post-Plasma Synthesis of New Monosort Functional Groups by Conversion of Plasma-Introduced Bromine Groups 8.2.12 Grafting of Molecules onto Br Groups by Nucleophilic Substitution 8.2.13 Grafting Density at Polyolefin Surfaces 8.2.14 Comparison of Surface Bromination of Polyolefins with Other Processes 8.2.15 Plasma Bromination of Graphitic and Carbon Surfaces 8.2.16 Efficiency in Bromination and Grafting of Carbon in Comparison to Polyolefins 8.2.17 Conclusions to Plasma Bromination References 9 Noble Gas Plasmas 9.1 Characterization of Noble Gas Plasmas 9.2 Polymer Crosslinking Caused by Noble Gas Plasmas 9.3 Vacuum-Ultra Violet Radiation Emitted by Noble Gas Plasmas References 10 Plasma Polymerization 10.1 Introduction 10.2 Milestones in History 10.3 General Features of Plasma Polymers 10.4 Mechanisms of Plasma Polymerization 10.4.1 Absence of Often Proposed Plasma-Induced Radical Chain-Growth Polymerization to Linear Macromolecules? 10.4.2 Radical Polymerization of Allyl Monomers 10.4.3 Ion-Molecule Reactions 10.4.4 Role of Polymerizing Intermediates 10.4.5 Crosslinking 10.4.6 Polymerization in Continuous-Wave Plasma 10.4.7 Pulsed Plasma Polymerization 10.4.8 Pressure and Plasma-Pulsed Discharge 10.5 Special Aspects of Plasma Polymerization 10.5.1 Fragmentation-(poly)Recombination 10.5.2 Atomic Polymerization 10.5.3 Rearrangement and Crosslinking of the Already Deposited Plasma Polymer Layer by Plasma Particle Bombardment and Vacuum-UV 10.5.4 Formation of Unsaturations 10.5.5 Formation of CH₃ Groups 10.5.6 H/C Ratio in Plasma Polymers and “Quasi-Hydrogen-Plasma” 10.5.7 Hydrogen Exchange Between Plasma and Polymer Deposit 10.5.8 Existence of Crystalline and Supermolecular Structures in Plasma Polymers 10.5.9 Influence of Monomer or Precursor Type 10.5.10 Role of Pressure and Flow Rate 10.5.11 Role of Energy Dose 10.5.12 Plasma Polymerization of n-Hexane and Other Hydrocarbons 10.5.13 Dependence of Deposition Rate on Position of Sample in the Plasma Zone 10.5.14 Retention of Monomer Structure in Plasma Polymer – Changes in Aromaticity and Substitution 10.5.15 Molecular Weight Distribution 10.5.16 Energetic Balancing 10.6 Locus of Plasma Polymerization 10.6.1 Adsorption or Gas Phase? 10.6.2 Powder Formation 10.6.3 Redeposition of Etched Products as Layer 10.6.4 Special Effects of Irradiation of Growing Polymer Layer by Vacuum-UV Radiation from Plasma 10.6.5 Formation of a “Polymer Skin” 10.6.6 Graft Polymerization 10.7 Plasma Polymers with Monosort Functional Groups 10.7.1 OH Groups 10.7.2 COOH Groups 10.7.3 NH₂ Groups 10.8 Attempts to Increase the Yield of Functional Group 10.8.1 Optimization of Plasma Conditions for Generation of NH₂ Groups 10.8.2 Attempts to Increase the Concentration of NH₂ Groups by Addition of Ammonia to Allylamine Plasma Polymerization 10.8.3 Alternative Methods 10.8.4 Plasma-Produced Amino Groups for Promotion of Adhesion 10.9 Plasma Copolymerization 10.9.1 General Remarks on the Background of Copolymerization and Its Definition 10.9.2 Copolymers with Allyl Alcohol 10.9.3 Copolymers with Acrylic Acid 10.9.4 Allylamine Copolymers 10.10 Grafting Onto Plasma Polymers as Special Case of ‘Graft-Copolymerization’ 10.10.1 General Aspects 10.10.2 Direct Grafting Onto Radical Sites 10.10.3 Grafting Onto Peroxy Radicals/Hydroperoxides 10.10.4 Reactions with OH Groups 10.10.5 Reactions with COOH Groups 10.10.6 Reactions with NH₂ Groups 10.10.7 Reactions with Br Groups 10.10.8 Other Methods 10.11 Significant Side Reactions 10.11.1 Details of the IR Bands at 2200 cm-¹ 10.11.2 DSC Results 10.11.3 Post-Plasma Oxidation 10.11.4 Attempts to Eliminate Post-Plasma Oxidations 10.12 Plasma Polymers Deposited by Atmospheric-Pressure Plasmas References 11 Technical Applications 11.1 Introduction 11.2 Adhesion Promotion 11.2.1 Polymer Surface Modification 11.2.2 Combination of Plasma Pretreatment and Wet-Chemical Post-Plasma Treatment 11.2.3 Deposition of Adhesion-Promoting Polymer Films 11.2.3.1 Direct Grafting 11.2.3.2 Grafting via Peroxy Route 11.2.3.3 Co-Evaporation or Sputtering of Metals During Plasma Polymerization 11.2.3.4 Plasma Polymer Coating 11.3 Cleaning 11.4 Wettability 11.5 Etching of Polymers 11.5.1 Preparation and Excavation of Supermolecular Structures of Polymers for Their Characterization by Electron Microscopy 11.5.2 Ashing 11.6 Barrier Layers or Barrier Formation 11.6.1 Organic and Inorganic Barrier Layer for Limiting Diffusion 11.6.2 Fluorination of Polymers 11.7 Anti-Fouling Layers 11.8 Sterilization 11.9 Water Purification and Desalination 11.10 Flame Protection 11.11 Textile Modification 11.12 Modification of Carbon Fibers and Nanotubes 11.13 Silent Discharge and Excimer Radiation 11.14 Conducting Films 11.15 Scratch-Resistant Coatings 11.16 Underwater Plasma References Index