دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل عددی ویرایش: نویسندگان: Ronald E. Mickens سری: ISBN (شابک) : 9811222533, 9789811222535 ناشر: World Scientific Publishing سال نشر: 2020 تعداد صفحات: 332 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Nonstandard Finite Difference Schemes: Methodology and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طرحهای تفاوت محدود غیر استاندارد: روششناسی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface 0. A Second Edition . . .Why? 0.1 Purpose 0.2 Ambiguities with the Discretization Process 0.3 The Nonstandard Finite Difference Methodology References 1. Introduction 1.1 Numerical Integration 1.2 Standard Finite Difference Modeling Rules 1.3 Examples 1.3.1 Decay Equation 1.3.2 Logistic Equation 1.3.3 Harmonic Oscillator 1.3.4 Unidirectional Wave Equation 1.3.5 Diffusion Equation 1.3.6 Burgers\' Equation 1.4 Critique References 2. Numerical Instabilities 2.1 Introduction 2.2 Decay Equation 2.3 Harmonic Oscillator 2.4 Logistic Differential Equation 2.5 Unidirectional Wave Equation 2.6 Burgers\' Equation 2.7 Summary References 3. Nonstandard Finite Difference Schemes 3.1 Introduction 3.2 Exact Finite Difference Schemes 3.3 Examples of Exact Schemes 3.4 Nonstandard Modeling Rules 3.5 Best Finite Difference Schemes References 4. First-Order ODE\'s 4.1 Introduction 4.2 A New Finite Difference Scheme 4.3 Examples 4.3.1 Decay Equation 4.3.2 Logistic Equation 4.3.3 ODE with Three Fixed-Points 4.4 Nonstandard Schemes 4.4.1 Logistic Equation 4.4.2 ODE with Three Fixed-Points 4.5 Discussion References 5. Second-Order, Nonlinear Oscillator Equations 5.1 Introduction 5.2 Mathematical Preliminaries 5.3 Conservative Oscillators 5.4 Limit-Cycle Oscillators 5.5 General Oscillator Equations 5.6 Response of a Linear System References 6. Two First-Order, Coupled Ordinary Differential Equations 6.1 Introduction 6.2 Background 6.3 Exact Scheme for Linear Ordinary Differential Equations 6.4 Nonlinear Equations 6.5 Examples 6.5.1 Harmonic Oscillator 6.5.2 Damped Harmonic Oscillator 6.5.3 Duffing Oscillator 6.5.4 x + x + ϵx2 = 0 6.5.5 van der Pol Oscillator 6.5.6 Lewis Oscillator 6.5.7 General Class of Nonlinear Oscillators 6.5.8 Batch Fermentation Processes 6.6 Summary References 7. Partial Differential Equations 7.1 Introduction 7.2 Wave Equations 7.2.1 ut + ux = 0 7.2.2 ut − ux = 0 7.2.3 utt − uxx = 0 7.2.4 ut + ux = u(1 − u) 7.2.5 uk + ux = buxx 7.3 Diffusion Equations 7.3.1 ut = auxx + bu 7.3.2 ut = uuxx 7.3.3 ut = uuxx + -u(1 − u) 7.3.4 ut = uxx + -u(1 − u) 7.4 Burgers\' Type Equations 7.4.1 ut + uux = 0 7.4.2 ut + uux = -u(1 − u) 7.4.3 ut + uux = uuxx 7.5 Discussion References 8. Schrödinger Differential Equations 8.1 Introduction 8.2 Schrödinger Ordinary Differential Equations 8.2.1 Numerov Method 8.2.2 Mickens-Ramadhani Scheme 8.2.3 Combined Numerov-Mickens Scheme 8.3 Schrödinger Partial Differential Equations 8.3.1 ut = iuxx 8.3.2 ut = i[uxx + f(x)u] 8.3.3 Nonlinear, Cubic Schrödinger Equation References 9. The NSFD Methodology 9.1 Introduction 9.2 The Modeling Process 9.3 Intrinsic Time and Space Scales 9.4 Dynamical Consistency 9.5 Numerical Instabilities 9.6 Denominator Functions 9.7 Nonlocal Discretization of Functions 9.8 Method of Sub-Equations 9.9 Constructing NSFD Schemes 9.10 Final Comments References 10. Some Exact Finite Difference Schemes 10.1 Introduction 10.2 General, Linear, Homogeneous, First-Order ODE 10.3 Several Important Exact Schemes 10.3.1 Decay Equation 10.3.2 Harmonic Oscillator 10.3.3 Logistic Equation 10.3.4 Quadratic Decay Equation 10.3.5 Nonlinear Equation 10.3.6 Cubic Decay Equation 10.3.7 Linear Velocity Force Equation 10.3.8 Damped Harmonic Oscillator 10.3.9 Unidirectional Wave Equations 10.3.10 Full Wave Equation 10.3.11 Nonlinear, Fisher-Type Unidirection Wave Equation 10.3.12 Unidirectional, Spherical Wave Equation 10.3.13 Steady-State Wave Equation with Spherical Symmetry 10.3.14 Wave Equation having Spherical Symmetry 10.3.15 Two-Dimensional, Linear Advection Equation 10.3.16 Two-Dimensional, Nonlinear (Logistic) Advection Equation 10.4 Two Coupled, Linear ODE\'s with Constant Coefficients 10.5 Jacobi Cosine and Sine Functions 10.6 Cauchy-Euler Equation 10.7 Michaelis-Menten Equation 10.8 Weierstrass Elliptic Function 10.9 Modified Lotka-Volterra Equations 10.10 Comments References 11. Applications and Related Topics 11.1 Introduction 11.2 Stellar Structures References 11.3 The x − y − z Model References 11.4 Mickens\' Modified Newton\'s Law of Cooling References 11.5 NSFD Schemes for dx=dt = −λxα Reference 11.6 Exact Scheme for Linear ODE\'s with Constant Coefficients References 11.7 Discrete 1-Dim Hamiltonian Systems 11.7.1 Discrete Hamiltonian Construction 11.7.2 Discrete Equations of Motion for Eq. (11.7.32) 11.7.3 Non-Polynomial Potential Energy 11.7.4 Two Interesting Results References 11.8 Cube Root Oscillators 11.8.1 Cube Root Oscillator 11.8.2 Inverse Cube-Root Oscillator References 11.9 Alternative Methodologies for Constructing Discrete-Time Population Models 11.9.1 Comments 11.9.2 Modified Anderson-May Models 11.9.3 Discrete Exponentialization 11.10 Interacting Populations with Conservation Laws 11.10.0 Comments 11.10.1 Conservation Laws 11.10.2 Chemostate Model 11.10.3 SIR Model 11.10.4 SEIR Model with Net Birthrate 11.10.5 Criss-Cross Model 11.10.6 Brauer-van den Driessche SIR Model 11.10.7 Spatial Spread of Rabies 11.10.8 Fisher Equation References 11.11 Black-Scholes Equations References 11.12 Time-Independent Schrödinger Equations References 11.13 Linear, Damped Wave Equation References 11.14 NSFD Constructions for Burgers and Burgers-Fisher PDE\'s 11.14.1 Burgers Equations: ut + uux = uxx 11.14.2 Burgers-Fisher Equations: ut +uux = uxx +u(1−u) References 11.15 Cross-Diffusion References 11.16 Delay Differential Equations References 11.17 Fractional Differential Equations References 11.18 Summary Appendix A Difference Equations A.1 Linear Equations A.2 Riccati Equations A.3 Separation-of-Variables Reference Appendix B Linear Stability Analysis B.1 Ordinary Differential Equations B.2 Ordinary Difference Equations References Appendix C Discrete WKB Method References Bibliography Index