دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 3 نویسندگان: Andrei Ludu سری: Springer Series in Synergetics ISBN (شابک) : 3031146409, 9783031146404 ناشر: Springer سال نشر: 2022 تعداد صفحات: 583 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Nonlinear Waves and Solitons on Contours and Closed Surfaces به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امواج غیرخطی و سالیتون ها روی خطوط و سطوح بسته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Contents Symbols 1 Introduction 1.1 Intuitive Introduction to Nonlinear Waves and Solitons 1.2 Integrability 1.3 Algebraic and Geometric Approaches 1.4 A List of Useful Derivatives in Finite Dimensional Spaces References Part I Mathematical Prerequisites 2 Topology and Algebra 2.1 What Is Topology 2.1.1 Topological Spaces and Separation 2.1.2 Compactness and Weierstrass-Stone Theorem 2.1.3 Connectedness and Homotopy 2.1.4 Separability and Metric Spaces 2.2 Elements of Homology 2.3 Group Action References 3 Vector Fields, Differential Forms, and Derivatives 3.1 Manifolds and Maps 3.2 Differential and Vector Fields 3.3 Existence and Uniqueness Theorems: Differential Equation Approach 3.4 Existence and Uniqueness Theorems: Flow Box Approach 3.5 Compact Supported Vector Fields 3.6 Differential Forms and the Lie Derivative 3.7 Differential Systems, Integrability and Invariants 3.8 Poincaré Lemma 3.9 Fiber Bundles and Covariant Derivative 3.9.1 Principal Bundle and Frames 3.9.2 Connection Form and Covariant Derivative 3.10 Tensor Analysis 3.11 The Mixed Covariant Derivative 3.12 Curvilinear Orthogonal Coordinates 3.13 Special Two-Dimensional Nonlinear Orthogonal Coordinates 3.14 Problems References 4 The Importance of the Boundary 4.1 The Power of Compact Boundaries: Representation Formulas 4.1.1 Representation Formula for n=1: Taylor Series 4.1.2 Representation Formula for n=2: Cauchy Formula 4.1.3 Representation Formula for n=3: Green Formula 4.1.4 Representation Formula in General: Stokes Theorem 4.2 Comments and Examples References Part II Curves and Surfaces 5 Geometry of Curves 5.1 Elements of Differential Geometry of Curves 5.2 Closed Curves 5.3 Curves Lying on a Surface 5.4 Problems References 6 Geometry of Surfaces 6.1 Elements of Differential Geometry of Surfaces 6.2 Covariant Derivative and Connections 6.3 Geometry of Parameterized Surfaces Embedded in mathbbR3 6.3.1 Christoffel Symbols and Covariant Differentiation for Hybrid Tensors 6.4 Compact Surfaces 6.5 Surface Differential Operators 6.5.1 Surface Gradient 6.5.2 Surface Divergence 6.5.3 Surface Laplacian 6.5.4 Surface Curl 6.5.5 Integral Relations for Surface Differential Operators 6.5.6 Applications 6.6 Problems References 7 Motion of Curves and Solitons 7.1 Kinematics of Two-Dimensional Curves 7.2 Mapping Two-Dimensional Curve Motion into Nonlinear Integrable Systems 7.3 The Time Evolution of Length and Area 7.4 Cartan Theory of Three-Dimensional Curve Motion 7.5 Kinematics of Three-Dimensional Curves 7.6 Mapping Three-Dimensional Curve Motion into Nonlinear Integrable Systems 7.7 Problems References 8 Theory of Motion of Surfaces 8.1 Differential Geometry of Surface Motion 8.2 Coordinates and Velocities on a Fluid Surface 8.3 Kinematics of Moving Surfaces 8.4 Dynamics of Moving Surfaces 8.5 Boundary Conditions for Moving Fluid Interfaces 8.6 Dynamics of the Fluid Interfaces 8.7 Problems References Part III Solitons and Nonlinear Waves on Closed Curves and Surfaces 9 Kinematics of Fluids 9.1 Lagrangian Verses Eulerian Frames 9.1.1 Introduction 9.1.2 Geometrical Picture for Lagrangian Verses Eulerian 9.2 Fluid Fiber Bundle 9.2.1 Introduction 9.2.2 Motivation for a Geometrical Approach 9.2.3 The Fiber Bundle 9.2.4 Fixed Fluid Container 9.2.5 Free Surface Fiber Bundle 9.2.6 How Does the Time Derivative of Tensors Transform from Euler to Lagrange Frame? 9.3 Path Lines, Stream Lines, and Particle Contours 9.4 Eulerian–Lagrangian Description for Moving Curves 9.5 The Free Surface 9.6 Equation of Continuity 9.6.1 Introduction 9.6.2 Solutions of the Continuity Equation on Compact Intervals 9.7 Problems References 10 Hydrodynamics 10.1 Momentum Conservation: Euler and Navier–Stokes Equations 10.2 Boundary Conditions 10.3 Circulation Theorem 10.4 Surface Tension 10.4.1 Physical Problem 10.4.2 Minimal Surfaces 10.4.3 Application 10.4.4 Isothermal Parametrization 10.4.5 Topological Properties of Minimal Surfaces 10.4.6 General Condition for Minimal Surfaces 10.4.7 Surface Tension for Almost Isothermal Parametrization 10.5 Special Fluids 10.6 Representation Theorems in Fluid Dynamics 10.6.1 Helmholtz Decomposition Theorem in mathbbR3 10.6.2 Decomposition Formula for Transversal Isotropic Vector Fields 10.6.3 Solenoidal–Toroidal Decomposition Formulas 10.7 Problems References 11 Nonlinear Surface Waves in One Dimension 11.1 KdV Equation Deduction for Shallow Waters 11.2 Smooth Transitions Between Periodic and Aperiodic Solutions 11.3 Modified KdV Equation and Generalizations 11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities 11.4.1 A Compact Version for KdV 11.4.2 Small Amplitude Approximation 11.4.3 Dispersion Relations 11.4.4 The Full Equation 11.4.5 Reduction of GKdV to Other Equations and Solutions 11.4.6 The Finite Difference Form 11.5 Boussinesq Equations on a Circle References 12 Nonlinear Surface Waves in Two Dimensions 12.1 Geometry of Two-Dimensional Flow 12.2 Two-Dimensional Nonlinear Equations 12.3 Two-Dimensional Fluid Systems with Moving Boundary 12.4 Oscillations in Two-Dimensional Liquid Drops 12.5 Contours Described by Quartic Closed Curves 12.6 Nonlinear Waves in Rotating Leidenfrost Drops References 13 Dynamics of Two-Dimensional Fluid in Bounded Domain via Conformal Variables (A. Chernyavsky and S. Dyachenko) 13.1 Introduction 13.2 Mechanics of Droplet and the Conformal Map 13.2.1 The Hamiltonian, Momentum and Angular Momentum 13.2.2 The Center of Mass 13.3 The Complex Equations of Motion 13.3.1 Kinematic Equation 13.3.2 Dynamic Condition 13.4 Traveling Waves Around a Disk 13.5 Linear Waves 13.6 Numerical Simulation 13.7 Series Solution 13.8 Nonlinear Waves 13.9 Conclusion References 14 Nonlinear Surface Waves in Three Dimensions 14.1 Oscillations of Inviscid Drops: The Linear Model 14.1.1 Drop Immersed in Another Fluid 14.1.2 Drop with Rigid Core 14.1.3 Moving Core 14.1.4 Drop Volume 14.2 Oscillations of Viscous Drops: The Linear Model 14.2.1 Model 1 14.3 Nonlinear Three-Dimensional Oscillations of Axisymmetric Drops 14.3.1 Nonlinear Resonances in Drop Oscillation 14.4 Other Nonlinear Effects in Drop Oscillations 14.5 Solitons on the Surface of Liquid Drops 14.6 Problems References 15 Other Special Nonlinear Compact Systems 15.1 Solitons on Interfaces of Layered Fluid Droplet (Written by A. S. Carstea) 15.2 Nonlinear Compact Shapes and Collective Motion 15.3 The Hamiltonian Structure for Free Boundary Problems on Compact Surfaces References Part IV Physical Nonlinear Systems at Different Scales 16 Filaments, Chains, and Solitons 16.1 Vortex Filaments 16.1.1 Gas Dynamics Filament Model and Solitons 16.1.2 Special Solutions 16.1.3 Integration of Serret–Frenet Equations for Filaments 16.1.4 The Riccati Form of the Serret–Frenet Equations 16.2 Soliton Solutions on the Vortex Filament 16.2.1 Constant Torsion Vortex Filaments 16.2.2 Vortex Filaments and the Nonlinear Schrödinger Equation 16.3 Closed Curves Solitons 16.4 Nonlinear Dynamics of Stiff Chains 16.5 Problems References 17 Solitons on the Boundaries of Microscopic Systems 17.1 Solitons as Elementary Particles 17.2 Quantization of Solitons on a Closed Contour and Instantons 17.3 Clusters as Solitary Waves on the Nuclear Surface 17.4 Nonlinear Schrödinger Equation Solitons on Quantum … 17.5 Solitons and Quasimolecular Structure 17.6 Soliton Model for Heavy Emitted Nuclear Clusters 17.7 Quintic Nonlinear Schrödinger Equation for Nuclear Cluster Decay 17.8 Contour Solitons in the Quantum Hall Liquid References 18 Nonlinear Contour Dynamics in Macroscopic Systems 18.1 Plasma Vortex 18.1.1 Effective Surface Tension in Magnetohydrodynamics and Plasma Systems 18.1.2 Trajectories in Magnetic Field Configurations 18.1.3 Magnetic Surfaces in Static Equilibrium 18.2 Elastic Spheres 18.3 Curvature Dependent Nonlinear Diffusion on Closed Surfaces 18.4 Nonlinear Evolution of Oscillation Modes in Neutron Stars References 19 Mathematical Appendix 19.1 Differentiable Manifolds 19.2 Riccati Equation 19.3 Special Functions 19.4 One-Soliton Solutions for the KdV, MKdV, and Their Combination 19.5 Scaling and Nonlinear Dispersion Relations1 References Index