دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Oliver Nelles
سری:
ISBN (شابک) : 3030474380, 9783030474386
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 1225
[1233]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 63 Mb
در صورت تبدیل فایل کتاب Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شناسایی غیرخطی سیستم: از رویکردهای کلاسیک گرفته تا شبکه های عصبی ، مدل های فازی و فرایندهای گاوسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به مهندسان و دانشمندان دانشگاه و صنعت، درک کاملی از اصول اساسی شناسایی سیستم های غیرخطی ارائه می دهد. آنها را مجهز می کند تا مدل ها و روش های مورد بحث را برای مشکلات واقعی با اطمینان به کار ببرند، در حالی که آنها را از مشکلات احتمالی که ممکن است در عمل به وجود بیاید آگاه می کند.
علاوه بر این، کتاب مستقل است و فقط به درک اولیه از جبر ماتریسی، سیگنالها و سیستمها و آمار نیاز دارد. بر این اساس، میتواند به عنوان مقدمهای برای شناسایی سیستم خطی عمل کند و یک نمای کلی از روشهای بهینهسازی اصلی مورد استفاده در مهندسی ارائه میکند. تمرکز بر دستیابی به درک شهودی از موضوع و کاربرد عملی تکنیک های مورد بحث است. کتاب به سبک قضیه/اثبات نوشته نشده است. در عوض، ریاضیات به حداقل می رسد، و ایده های پوشش داده شده با شکل های متعدد، مثال ها، و برنامه های کاربردی در دنیای واقعی نشان داده شده است.
در گذشته، شناسایی سیستم غیرخطی زمینهای بود که با انواع
رویکردهای موقتی مشخص میشد که هر یک فقط برای یک کلاس بسیار
محدود از سیستمها قابل استفاده بودند. با ظهور شبکههای عصبی،
مدلهای فازی، مدلهای فرآیند گاوسی و تکنیکهای مدرن
بهینهسازی ساختار، اکنون میتوان کلاس بسیار گستردهتری از
سیستمها را مدیریت کرد. اگرچه یکی از جنبههای اصلی سیستمهای
غیرخطی این است که تقریباً هر یک از آنها منحصربهفرد هستند،
اما از آن زمان ابزارهایی توسعه یافتهاند که به هر رویکرد
اجازه میدهد تا برای طیف گستردهای از سیستمها اعمال
شود.
This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice.
Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications.
In the past, nonlinear system identification was a field
characterized by a variety of ad-hoc approaches, each
applicable only to a very limited class of systems. With the
advent of neural networks, fuzzy models, Gaussian process
models, and modern structure optimization techniques, a much
broader class of systems can now be handled. Although one
major aspect of nonlinear systems is that virtually every one
is unique, tools have since been developed that allow each
approach to be applied to a wide variety of systems.
Preface to the Second Edition Preface to the First Edition Contents Notation 1 Introduction 1.1 Relevance of Nonlinear System Identification 1.1.1 Linear or Nonlinear? 1.1.2 Prediction 1.1.3 Simulation 1.1.4 Optimization 1.1.5 Analysis 1.1.6 Control 1.1.7 Fault Detection 1.2 Views on Nonlinear System Identification 1.3 Tasks in Nonlinear System Identification 1.3.1 Choice of the Model Inputs 1.3.2 Choice of the Excitation Signals 1.3.3 Choice of the Model Architecture 1.3.4 Choice of the Dynamics Representation 1.3.5 Choice of the Model Order 1.3.6 Choice of the Model Structure and Complexity 1.3.7 Choice of the Model Parameters 1.3.8 Model Validation 1.3.9 The Role of Fiddle Parameters 1.4 White Box, Black Box, and Gray Box Models 1.5 Outline of the Book and Some Reading Suggestions 1.6 Terminology Part I Optimization 2 Introduction to Optimization 2.1 Overview of Optimization Techniques 2.2 Kangaroos 2.3 Loss Functions for Supervised Methods 2.3.1 Maximum Likelihood Method 2.3.2 Maximum A Posteriori and Bayes Method 2.4 Loss Functions for Unsupervised Methods 3 Linear Optimization 3.1 Least Squares (LS) 3.1.1 Covariance Matrix of the Parameter Estimate 3.1.2 Errorbars 3.1.3 Orthogonal Regressors 3.1.4 Regularization/Ridge Regression 3.1.4.1 Efficient Computation 3.1.4.2 Covariances for Ridge Regression 3.1.4.3 Prior Parameters for Ridge Regression 3.1.5 Ridge Regression: Alternative Formulation 3.1.6 L1 Regularization 3.1.7 Noise Assumptions 3.1.8 Weighted Least Squares (WLS) 3.1.9 Robust Regression 3.1.10 Least Squares with Equality Constraints 3.1.11 Smoothing Kernels 3.1.11.1 Ridge Regression 3.1.12 Effective Number of Parameters 3.1.13 L2 Boosting 3.1.13.1 Shrinkage 3.2 Recursive Least Squares (RLS) 3.2.1 Reducing the Computational Complexity 3.2.2 Tracking Time-Variant Processes 3.2.3 Relationship Between the RLS and the KalmanFilter 3.3 Linear Optimization with Inequality Constraints 3.4 Subset Selection 3.4.1 Methods for Subset Selection 3.4.2 Orthogonal Least Squares (OLS) for Forward Selection 3.4.3 Ridge Regression or Subset Selection? 3.5 Summary 3.6 Problems 4 Nonlinear Local Optimization 4.1 Batch and Sample Adaptation 4.1.1 Mini-Batch Adaptation 4.1.2 Sample Adaptation 4.2 Initial Parameters 4.3 Direct Search Algorithms 4.3.1 Simplex Search Method 4.3.2 Hooke-Jeeves Method 4.4 General Gradient-Based Algorithms 4.4.1 Line Search 4.4.1.1 Interval Reduction 4.4.1.2 Interval Location 4.4.2 Finite Difference Techniques 4.4.3 Steepest Descent 4.4.4 Newton's Method 4.4.5 Quasi-Newton Methods 4.4.6 Conjugate Gradient Methods 4.5 Nonlinear Least Squares Problems 4.5.1 Gauss-Newton Method 4.5.2 Levenberg-Marquardt Method 4.6 Constrained Nonlinear Optimization 4.7 Summary 4.8 Problems 5 Nonlinear Global Optimization 5.1 Simulated Annealing (SA) 5.2 Evolutionary Algorithms (EA) 5.2.1 Evolution Strategies (ES) 5.2.2 Genetic Algorithms (GA) 5.2.3 Genetic Programming (GP) 5.3 Branch and Bound (B&B) 5.4 Tabu Search (TS) 5.5 Summary 5.6 Problems 6 Unsupervised Learning Techniques 6.1 Principal Component Analysis (PCA) 6.2 Clustering Techniques 6.2.1 k-Means Algorithm 6.2.2 Fuzzy C-Means (FCM) Algorithm 6.2.3 Gustafson-Kessel Algorithm 6.2.4 Kohonen's Self-Organizing Map (SOM) 6.2.5 Neural Gas Network 6.2.6 Adaptive Resonance Theory (ART) Network 6.2.7 Incorporating Information About the Output 6.3 Summary 6.4 Problems 7 Model Complexity Optimization 7.1 Introduction 7.2 Bias/Variance Tradeoff 7.2.1 Bias Error 7.2.2 Variance Error 7.2.3 Tradeoff 7.2.3.1 Dependency on the Amount of Data 7.2.3.2 Optimism 7.3 Evaluating the Test Error and Alternatives 7.3.1 Training, Validation, and Test Data 7.3.2 Cross-Validation (CV) 7.3.2.1 S-Fold Cross-Validation 7.3.2.2 Leave-One-Out Error 7.3.2.3 Leave-One-Out Versus S-Fold CV 7.3.2.4 Bootstrapping 7.3.2.5 Why Ensemble Methods Work 7.3.3 Information Criteria 7.3.3.1 Effective Number of Parameters and Effective Amount of Data 7.3.4 Multi-Objective Optimization 7.3.5 Statistical Tests 7.3.6 Correlation-Based Methods 7.4 Explicit Structure Optimization 7.5 Regularization: Implicit Structure Optimization 7.5.1 Effective Parameters 7.5.2 Regularization by Non-Smoothness Penalties 7.5.2.1 Curvature Penalty 7.5.2.2 Ridge Regression 7.5.2.3 Weight Decay 7.5.3 Regularization by Early Stopping 7.5.4 Regularization by Constraints 7.5.5 Regularization by Staggered Optimization 7.5.6 Regularization by Local Optimization 7.6 Structured Models for Complexity Reduction 7.6.1 Curse of Dimensionality 7.6.2 Hybrid Structures 7.6.2.1 Parallel Model 7.6.2.2 Series Model 7.6.2.3 Parameter Scheduling Model 7.6.3 Projection-Based Structures 7.6.4 Additive Structures 7.6.5 Hierarchical Structures 7.6.6 Input Space Decomposition with Tree Structures 7.7 Summary 7.8 Problems 8 Summary of Part I Part II Static Models 9 Introduction to Static Models 9.1 Multivariable Systems 9.2 Basis Function Formulation 9.2.1 Global and Local Basis Functions 9.2.2 Linear and Nonlinear Parameters 9.3 Extended Basis Function Formulation 9.4 Static Test Process 9.5 Evaluation Criteria 10 Linear, Polynomial, and Look-Up Table Models 10.1 Linear Models 10.2 Polynomial Models 10.2.1 Regularized Polynomials 10.2.1.1 Penalization of Offset 10.2.2 Orthogonal Polynomials 10.2.3 Summary Polynomials 10.3 Look-Up Table Models 10.3.1 One-Dimensional Look-Up Tables 10.3.2 Two-Dimensional Look-Up Tables 10.3.3 Optimization of the Heights 10.3.4 Optimization of the Grid 10.3.5 Optimization of the Complete Look-Up Table 10.3.6 Incorporation of Constraints 10.3.6.1 Constraints on the Grid 10.3.6.2 Constraints on the Heights 10.3.7 Properties of Look-Up Table Models 10.4 Summary 10.5 Problems 11 Neural Networks 11.1 Construction Mechanisms 11.1.1 Ridge Construction 11.1.2 Radial Construction 11.1.3 Tensor Product Construction 11.2 Multilayer Perceptron (MLP) Network 11.2.1 MLP Neuron 11.2.2 Network Structure 11.2.3 Backpropagation 11.2.4 MLP Training 11.2.4.1 Initialization 11.2.4.2 Regulated Activation Weight Neural Network (RAWN) or Extreme Learning Machine 11.2.4.3 Nonlinear Optimization of the MLP 11.2.4.4 Combined Training Methods for the MLP 11.2.5 Simulation Examples 11.2.6 MLP Properties 11.2.7 Projection Pursuit Regression (PPR) 11.2.8 Multiple Hidden Layers 11.2.9 Deep Learning 11.3 Radial Basis Function (RBF) Networks 11.3.1 RBF Neuron 11.3.2 Network Structure 11.3.3 RBF Training 11.3.3.1 Random Center Placement 11.3.3.2 Clustering for Center Placement 11.3.3.3 Complexity Controlled Clustering for Center Placement 11.3.3.4 Grid-Based Center Placement 11.3.3.5 Subset Selection for Center Placement 11.3.3.6 Nonlinear Optimization for Center Placement 11.3.4 Simulation Examples 11.3.5 RBF Properties 11.3.6 Regularization Theory 11.3.7 Normalized Radial Basis Function (NRBF)Networks 11.3.7.1 Training 11.3.7.2 Side Effects of Normalization 11.3.7.3 Properties 11.4 Other Neural Networks 11.4.1 General Regression Neural Network (GRNN) 11.4.2 Cerebellar Model Articulation Controller(CMAC) 11.4.3 Delaunay Networks 11.4.4 Just-In-Time Models 11.5 Summary 11.6 Problems 12 Fuzzy and Neuro-Fuzzy Models 12.1 Fuzzy Logic 12.1.1 Membership Functions 12.1.2 Logic Operators 12.1.3 Rule Fulfillment 12.1.4 Accumulation 12.2 Types of Fuzzy Systems 12.2.1 Linguistic Fuzzy Systems 12.2.2 Singleton Fuzzy Systems 12.2.3 Takagi-Sugeno Fuzzy Systems 12.3 Neuro-Fuzzy (NF) Networks 12.3.1 Fuzzy Basis Functions 12.3.2 Equivalence Between RBF Networks and Fuzzy Models 12.3.3 What to Optimize? 12.3.3.1 Optimization of the Consequent Parameters 12.3.3.2 Optimization of the Premise Parameters 12.3.3.3 Optimization of the Rule Structure 12.3.3.4 Optimization of Operators 12.3.4 Interpretation of Neuro-Fuzzy Networks 12.3.5 Incorporating and Preserving Prior Knowledge 12.3.6 Simulation Examples 12.4 Neuro-Fuzzy Learning Schemes 12.4.1 Nonlinear Local Optimization 12.4.2 Nonlinear Global Optimization 12.4.3 Orthogonal Least Squares Learning 12.4.4 Fuzzy Rule Extraction by a Genetic Algorithm (FUREGA) 12.4.4.1 Coding of the Rule Structure 12.4.4.2 Overcoming the Curse of Dimensionality 12.4.4.3 Nested Least Squares Optimization of the Singletons 12.4.4.4 Constrained Optimization of the Input Membership Functions 12.4.4.5 Application Example 12.4.5 Adaptive Spline Modeling of Observation Data (ASMOD) 12.5 Summary 12.6 Problems 13 Local Linear Neuro-Fuzzy Models: Fundamentals 13.1 Basic Ideas 13.1.1 Illustration of Local Linear Neuro-Fuzzy Models 13.1.2 Interpretation of the Local Linear Model Offsets 13.1.2.1 Advantages of Local Description 13.1.3 Interpretation as Takagi-Sugeno Fuzzy System 13.1.4 Interpretation as Extended NRBF Network 13.2 Parameter Optimization of the Rule Consequents 13.2.1 Global Estimation 13.2.2 Local Estimation 13.2.3 Global Versus Local Estimation 13.2.4 Robust Regression 13.2.5 Regularized Regression 13.2.6 Data Weighting 13.3 Structure Optimization of the Rule Premises 13.3.1 Local Linear Model Tree (LOLIMOT) Algorithm 13.3.1.1 The LOLIMOT Algorithm 13.3.1.2 Computational Complexity 13.3.1.3 Two Dimensions 13.3.1.4 Convergence Behavior 13.3.1.5 AICC 13.3.2 Different Objectives for Structure and Parameter Optimization 13.3.3 Smoothness Optimization 13.3.4 Splitting Ratio Optimization 13.3.5 Merging of Local Models 13.3.6 Principal Component Analysis for Preprocessing 13.3.7 Models with Multiple Outputs 13.4 Summary 13.5 Problems 14 Local Linear Neuro-Fuzzy Models: Advanced Aspects 14.1 Different Input Spaces for Rule Premises and Consequents 14.1.1 Identification of Processes with Direction-Dependent Behavior 14.1.2 Piecewise Affine (PWA) Models 14.2 More Complex Local Models 14.2.1 From Local Neuro-Fuzzy Models to Polynomials 14.2.2 Local Quadratic Models for Input Optimization 14.2.2.1 Local Sparse Quadratic Models 14.2.3 Different Types of Local Models 14.3 Structure Optimization of the Rule Consequents 14.4 Interpolation and Extrapolation Behavior 14.4.1 Interpolation Behavior 14.4.2 Extrapolation Behavior 14.4.2.1 Ensuring Interpretable Extrapolation Behavior 14.4.2.2 Incorporation of Prior Knowledge into the Extrapolation Behavior 14.5 Global and Local Linearization 14.6 Online Learning 14.6.1 Online Adaptation of the Rule Consequents 14.6.1.1 Local Recursive Weighted Least Squares Algorithm 14.6.1.2 How Many Local Models to Adapt 14.6.1.3 Convergence Behavior 14.6.1.4 Robustness Against Insufficient Excitation 14.6.1.5 Parameter Variances and Blow-Up Effect 14.6.1.6 Computational Effort 14.6.1.7 Structure Mismatch 14.6.2 Online Construction of the Rule PremiseStructure 14.7 Oblique Partitioning 14.7.1 Smoothness Determination 14.7.2 Hinging Hyperplanes 14.7.3 Smooth Hinging Hyperplanes 14.7.4 Hinging Hyperplane Trees (HHT) 14.8 Hierarchical Local Model Tree (HILOMOT) Algorithm 14.8.1 Forming the Partition of Unity 14.8.2 Split Parameter Optimization 14.8.2.1 LOLIMOT Splits 14.8.2.2 Local Model Center 14.8.2.3 Convergence Behavior 14.8.3 Building up the Hierarchy 14.8.4 Smoothness Adjustment 14.8.5 Separable Nonlinear Least Squares 14.8.5.1 Idea 14.8.5.2 Termination Criterion 14.8.5.3 Constrained Optimization 14.8.5.4 Robust Estimation 14.8.5.5 Alternatives to Separable Nonlinear Least Squares 14.8.6 Analytic Gradient Derivation 14.8.6.1 Derivative of the Local Model Network 14.8.6.2 Derivative of the Sigmoidal Splitting Function 14.8.6.3 Derivative of the Local Model 14.8.6.4 Summary 14.8.7 Analyzing Input Relevance from Partitioning 14.8.7.1 Relevance for One Split 14.8.7.2 Relevance for the Whole Network 14.8.8 HILOMOT Versus LOLIMOT 14.9 Errorbars, Design of Excitation Signals,and Active Learning 14.9.1 Errorbars 14.9.1.1 Errorbars with Global Estimation 14.9.1.2 Errorbars with Local Estimation 14.9.2 Detecting Extrapolation 14.9.3 Design of Excitation Signals 14.10 Design of Experiments 14.10.1 Unsupervised Methods 14.10.1.1 Random 14.10.1.2 Sobol Sequence 14.10.1.3 Latin Hypercube (LH) 14.10.1.4 Optimized Latin Hypercube 14.10.2 Model Variance-Oriented Methods 14.10.2.1 Optimal Design 14.10.2.2 Polynomials 14.10.2.3 Basis Function Network 14.10.2.4 Multilayer Perceptron, Local Model Network, etc. 14.10.2.5 Gaussian Process Regression 14.10.3 Model Bias-Oriented Methods 14.10.3.1 Model Committee 14.10.3.2 Model Ensemble 14.10.3.3 HILOMOT DoE 14.10.4 Active Learning with HILOMOT DoE 14.10.4.1 Active Learning in General 14.10.4.2 Active Learning with HILOMOT DoE 14.10.4.3 Query Optimization 14.10.4.4 Sequential Strategy 14.10.4.5 Comparison of HILOMOT DoE with Unsupervised Design 14.10.4.6 Exploiting the Separation Between Premise and Consequent Input Spaces in Local Model Networks for DoE 14.10.4.7 Semi-Batch Strategy 14.10.4.8 Active Learning for Slow Modeling Approaches 14.10.4.9 Applications of HILOMOT DoE 14.11 Bagging Local Model Trees 14.11.1 Unstable Models 14.11.2 Bagging with HILOMOT 14.11.3 Bootstrapping for Confidence Assessment 14.11.4 Model Weighting 14.12 Summary and Conclusions 14.13 Problems 15 Input Selection for Local Model Approaches 15.1 Test Processes 15.1.1 Test Process One (TP1) 15.1.2 Test Process Two (TP2) 15.1.3 Test Process Three (TP3) 15.1.4 Test Process Four (TP4) 15.2 Mixed Wrapper-Embedded Input Selection Approach: Authored by Julian Belz 15.2.1 Investigation with Test Processes 15.2.1.1 Test Process One 15.2.2 Test Process Two 15.2.3 Extensive Simulation Studies 15.2.3.1 Evaluation Criteria 15.2.3.2 Search Strategies 15.2.3.3 A Priori Considerations 15.2.3.4 Comparison Results 15.3 Regularization-Based Input Selection Approach: Authored by Julian Belz 15.3.1 Normalized L1 Split Regularization 15.3.2 Investigation with Test Processes 15.3.2.1 Test Process One 15.3.2.2 Test Process Four 15.4 Embedded Approach: Authored by Julian Belz 15.4.1 Partition Analysis 15.4.2 Investigation with Test Processes 15.4.2.1 Test Process Three 15.4.2.2 Test Process Two 15.5 Visualization: Partial Dependence Plots 15.5.1 Investigation with Test Processes 15.5.1.1 Test Process One 15.5.1.2 Test Process Two 15.6 Miles per Gallon Data Set 15.6.1 Mixed Wrapper-Embedded Input Selection 15.6.2 Regularization-Based Input Selection 15.6.3 Visualization: Partial Dependence Plot 15.6.4 Critical Assessment of Partial Dependence Plots 16 Gaussian Process Models (GPMs) 16.1 Overview on Kernel Methods 16.1.1 LS Kernel Methods 16.1.2 Non-LS Kernel Methods 16.2 Kernels 16.3 Kernel Ridge Regression 16.3.1 Transition to Kernels 16.4 Regularizing Parameters and Functions 16.4.1 Discrepancy in Penalty Terms 16.5 Reproducing Kernel Hilbert Spaces (RKHS) 16.5.1 Norms 16.5.2 RKHS Objective and Solution 16.5.3 Equivalent Kernels and Locality 16.5.4 Two Points of View 16.5.4.1 Similarity-Based View 16.5.4.2 Superposition of Kernels View 16.6 Gaussian Processes/Kriging 16.6.1 Key Idea 16.6.2 Some Basics 16.6.3 Prior 16.6.4 Posterior 16.6.5 Incorporating Output Noise 16.6.6 Model Variance 16.6.7 Incorporating a Base Model 16.6.7.1 Subsequent Optimization 16.6.7.2 Simultaneous Optimization 16.6.8 Relationship to RBF Networks 16.6.9 High-Dimensional Kernels 16.7 Hyperparameters 16.7.1 Influence of the Hyperparameters 16.7.2 Optimization of the Hyperparameters 16.7.2.1 Number of Hyperparameters 16.7.2.2 One Versus Multiple Length Scales 16.7.2.3 Hyperparameter Optimization Methods 16.7.3 Marginal Likelihood 16.7.3.1 Likelihood for the Noise-Free Case 16.7.3.2 Marginal Likelihood for the Noisy Case 16.7.3.3 Marginal Likelihood Versus Leave-One-Out Cross Validation 16.7.4 A Note on the Prior Variance 16.8 Summary 16.9 Problems 17 Summary of Part II Part III Dynamic Models 18 Linear Dynamic System Identification 18.1 Overview of Linear System Identification 18.2 Excitation Signals 18.3 General Model Structure 18.3.1 Terminology and Classification 18.3.2 Optimal Predictor 18.3.2.1 Simulation 18.3.2.2 Prediction 18.3.3 Some Remarks on the Optimal Predictor 18.3.4 Prediction Error Methods 18.4 Time Series Models 18.4.1 Autoregressive (AR) 18.4.2 Moving Average (MA) 18.4.3 Autoregressive Moving Average (ARMA) 18.5 Models with Output Feedback 18.5.1 Autoregressive with Exogenous Input (ARX) 18.5.1.1 Least Squares (LS) 18.5.1.2 Consistency Problem 18.5.1.3 Instrumental Variables (IV) Method 18.5.1.4 Correlation Functions Least Squares (COR-LS) 18.5.2 Autoregressive Moving Average with Exogenous Input (ARMAX) 18.5.2.1 Estimation of ARMAX Models 18.5.3 Autoregressive Autoregressive with Exogenous Input (ARARX) 18.5.4 Output Error (OE) 18.5.4.1 Nonlinear Optimization of the OE Model Parameters 18.5.4.2 Repeated Least Squares and Filtering for OE Model Estimation 18.5.5 Box-Jenkins (BJ) 18.5.6 State Space Models 18.5.7 Simulation Example 18.6 Models Without Output Feedback 18.6.1 Finite Impulse Response (FIR) 18.6.1.1 Comparison ARX Versus FIR 18.6.2 Regularized FIR Models 18.6.2.1 TC Kernel 18.6.2.2 Filter Interpretation 18.6.3 Bias and Variance of Regularized FIR Models 18.6.4 Impulse Response Preservation (IRP) FIRApproach 18.6.4.1 Impulse Response Preservation (IRP) 18.6.4.2 Hyperparameter Optimization 18.6.4.3 Order Selection 18.6.4.4 Consequences of Undermodeling 18.6.4.5 Summary 18.6.5 Orthonormal Basis Functions (OBF) 18.6.5.1 Laguerre Filters 18.6.5.2 Poisson Filters 18.6.5.3 Kautz Filters 18.6.5.4 Generalized Filters 18.6.6 Simulation Example 18.7 Some Advanced Aspects 18.7.1 Initial Conditions 18.7.2 Consistency 18.7.3 Frequency-Domain Interpretation 18.7.4 Relationship Between Noise Model and Filtering 18.7.5 Offsets 18.8 Recursive Algorithms 18.8.1 Recursive Least Squares (RLS) Method 18.8.2 Recursive Instrumental Variables (RIV) Method 18.8.3 Recursive Extended Least Squares (RELS)Method 18.8.4 Recursive Prediction Error Methods (RPEM) 18.9 Determination of Dynamic Orders 18.10 Multivariable Systems 18.10.1 P-Canonical Model 18.10.2 Matrix Polynomial Model 18.10.3 Subspace Methods 18.11 Closed-Loop Identification 18.11.1 Direct Methods 18.11.2 Indirect Methods 18.11.2.1 Two-Stage Method 18.11.2.2 Coprime Factor Identification 18.11.3 Identification for Control 18.12 Summary 18.13 Problems 19 Nonlinear Dynamic System Identification 19.1 From Linear to Nonlinear System Identification 19.2 External Dynamics 19.2.1 Illustration of the External Dynamics Approach 19.2.1.1 Relationship Between the Input/Output Signals and the Approximator Input Space 19.2.1.2 Principal Component Analysis and Higher-Order Differences 19.2.1.3 One-Step Prediction Surfaces 19.2.1.4 Effect of the Sampling Time 19.2.2 Series-Parallel and Parallel Models 19.2.3 Nonlinear Dynamic Input/Output Model Classes 19.2.3.1 Models with Output Feedback 19.2.3.2 Models Without Output Feedback 19.2.4 Restrictions of Nonlinear Input/Output Models 19.3 Internal Dynamics 19.4 Parameter Scheduling Approach 19.5 Training Recurrent Structures 19.5.1 Backpropagation-Through-Time (BPTT)Algorithm 19.5.2 Real-Time Recurrent Learning 19.6 Multivariable Systems 19.6.1 Issues with Multiple Inputs 19.6.1.1 Asymmetry Going from ARX → OE to NARX → NOE 19.6.1.2 Mixed Dynamic and Static Behavior 19.7 Excitation Signals 19.7.1 From PRBS to APRBS 19.7.1.1 APRBS Construction 19.7.1.2 APRBS: Smoothing the Steps 19.7.2 Ramp 19.7.3 Multisine 19.7.4 Chirp 19.7.5 APRBS 19.7.5.1 Sinusoidal APRBS 19.7.6 NARX and NOBF Input Spaces 19.7.7 MISO Systems 19.7.7.1 Excitation of One Input at a Time 19.7.7.2 Excitation of All Inputs Simultaneously 19.7.7.3 Hold Time 19.7.8 Tradeoffs 19.8 Optimal Excitation Signal Generator: Coauthored by Tim O. Heinz 19.8.1 Approaches with Fisher Information 19.8.2 Optimized Nonlinear Input Signal (OMNIPUS) for SISO Systems 19.8.3 Optimized Nonlinear Input Signal (OMNIPUS) for MISO Systems 19.8.3.1 Separate Optimization of Each Input 19.8.3.2 Escaping the Curse of Dimensionality 19.8.3.3 Results for Two Inputs 19.8.3.4 Input Signal Correlation 19.8.3.5 Input Value Distribution 19.8.3.6 Extensions 19.9 Determination of Dynamic Orders 19.10 Summary 19.11 Problems 20 Classical Polynomial Approaches 20.1 Properties of Dynamic Polynomial Models 20.2 Kolmogorov-Gabor Polynomial Models 20.3 Volterra-Series Models 20.4 Parametric Volterra-Series Models 20.5 NDE Models 20.6 Hammerstein Models 20.7 Wiener Models 20.8 Problems 21 Dynamic Neural and Fuzzy Models 21.1 Curse of Dimensionality 21.1.1 MLP Networks 21.1.2 RBF Networks 21.1.3 Singleton Fuzzy and NRBF Models 21.2 Interpolation and Extrapolation Behavior 21.3 Training 21.3.1 MLP Networks 21.3.2 RBF Networks 21.3.3 Singleton Fuzzy and NRBF Models 21.4 Integration of a Linear Model 21.5 Simulation Examples 21.5.1 MLP Networks 21.5.2 RBF Networks 21.5.3 Singleton Fuzzy and NRBF Models 21.6 Summary 21.7 Problems 22 Dynamic Local Linear Neuro-Fuzzy Models 22.1 One-Step Prediction Error Versus Simulation Error 22.2 Determination of the Rule Premises 22.3 Linearization 22.3.1 Static and Dynamic Linearization 22.3.2 Dynamics of the Linearized Model 22.3.3 Different Rule Consequent Structures 22.4 Model Stability 22.4.1 Influence of Rule Premise Inputs on Stability 22.4.1.1 Rule Premise Inputs Without Output Feedback 22.4.1.2 Rule Premise Inputs with Output Feedback 22.4.2 Lyapunov Stability and Linear MatrixInequalities (LMIs) 22.4.3 Ensuring Stable Extrapolation 22.5 Dynamic LOLIMOT Simulation Studies 22.5.1 Nonlinear Dynamic Test Processes 22.5.2 Hammerstein Process 22.5.3 Wiener Process 22.5.4 NDE Process 22.5.5 Dynamic Nonlinearity Process 22.6 Advanced Local Linear Methods and Models 22.6.1 Local Linear Instrumental Variables (IV) Method 22.6.2 Local Linear Output Error (OE) Models 22.6.3 Local Linear ARMAX Models 22.7 Local Regularized Finite Impulse Response Models: Coauthored by Tobias Münker 22.7.1 Structure 22.7.2 Local Estimation 22.7.3 Hyperparamter Tuning 22.7.4 Evaluation of Performance 22.8 Local Linear Orthonormal Basis Functions Models 22.9 Structure Optimization of the Rule Consequents 22.10 Summary and Conclusions 22.11 Problems 23 Neural Networks with Internal Dynamics 23.1 Fully Recurrent Networks 23.2 Partially Recurrent Networks 23.3 State Recurrent Networks 23.4 Locally Recurrent Globally Feedforward Networks 23.5 Long Short-Term Memory (LSTM) Networks 23.6 Internal Versus External Dynamics 23.7 Problems Part IV Applications 24 Applications of Static Models 24.1 Driving Cycle 24.1.1 Process Description 24.1.2 Smoothing of a Driving Cycle 24.1.3 Improvements and Extensions 24.1.4 Differentiation 24.1.5 The Role of Look-Up Tables in Automotive Electronics 24.1.6 Modeling of Exhaust Gases 24.1.7 Optimization of Exhaust Gases 24.1.8 Outlook: Dynamic Models 24.2 Summary 25 Applications of Dynamic Models 25.1 Cooling Blast 25.1.1 Process Description 25.1.2 Experimental Results 25.1.2.1 Excitation Signal Design 25.1.2.2 Modeling and Identification 25.2 Diesel Engine Turbocharger 25.2.1 Process Description 25.2.2 Experimental Results 25.2.2.1 Excitation and Validation Signals 25.2.2.2 Modeling and Identification 25.2.2.3 Model Properties 25.2.2.4 Choice of Sampling Time 25.3 Thermal Plant 25.3.1 Process Description 25.3.2 Transport Process 25.3.2.1 Modeling and Identification 25.3.2.2 Model Properties 25.3.3 Tubular Heat Exchanger 25.3.3.1 Modeling and Identification 25.3.3.2 Model Properties 25.3.4 Cross-Flow Heat Exchanger 25.3.4.1 Data 25.3.4.2 Modeling and Identification 25.3.4.3 Model Properties 25.4 Summary 26 Design of Experiments 26.1 Practical DoE Aspects: Authored by Julian Belz 26.1.1 Function Generator 26.1.2 Order of Experimentation 26.1.3 Biggest Gap Sequence 26.1.4 Median Distance Sequence 26.1.5 Intelligent k-Means Sequence 26.1.5.1 Intelligent k-Means Initialization 26.1.6 Other Determination Strategies 26.1.7 Comparison on Synthetic Functions 26.1.8 Summary 26.1.9 Corner Measurement 26.1.10 Comparison of Space-Filling Designs 26.2 Active Learning for Structural Health Monitoring 26.2.1 Simulation Results 26.2.2 Experimental Results 26.3 Active Learning for Engine Measurement 26.3.1 Problem Setting 26.3.2 Operating Point-Specific Engine Models 26.3.2.1 Results 26.3.2.2 Reducing Measurement Time with HILOMOT DoE 26.3.2.3 Multiple Outputs 26.3.3 Global Engine Model 26.4 Nonlinear Dynamic Excitation Signal Design for Common Rail Injection 26.4.1 Example: High-Pressure Fuel Supply System 26.4.2 Identifying the Rail Pressure System 26.4.2.1 Local Model Networks 26.4.2.2 Gaussian Process Models (GPMs) 26.4.3 Results 26.4.3.1 Operating Point Depending Constraints 26.4.3.2 Data Acquisition 26.4.3.3 Accuracy of the Simulation Results 26.4.3.4 Qualitative Analysis 26.4.3.5 Quantitative Analysis 26.4.3.6 Data Coverage of the Input Space 27 Input Selection Applications 27.1 Air Mass Flow Prediction 27.1.1 Mixed Wrapper-Embedded Input Selection 27.1.2 Partition Analysis 27.2 Fan Metamodeling: Authored by Julian Belz 27.2.1 Centrifugal Impeller Geometry 27.2.2 Axial Impeller Geometry 27.2.3 Why Metamodels? 27.2.4 Design of Experiments: Centrifugal FanMetamodel 27.2.5 Design of Experiments: Axial Fan Metamodel 27.2.6 Order of Experimentation 27.2.7 Goal-Oriented Active Learning 27.2.8 Mixed Wrapper-Embedded Input Selection 27.2.9 Centrifugal Fan Metamodel 27.2.10 Axial Fan Metamodel 27.2.11 Summary 27.3 Heating, Ventilating, and Air Conditioning System 27.3.1 Problem Configuration 27.3.2 Available Data Sets 27.3.3 Mixed Wrapper-Embedded Input Selection 27.3.4 Results 28 Applications of Advanced Methods 28.1 Nonlinear Model Predictive Control 28.2 Online Adaptation 28.2.1 Variable Forgetting Factor 28.2.2 Control and Adaptation Models 28.2.3 Parameter Transfer 28.2.4 Systems with Multiple Inputs 28.2.5 Experimental Results 28.3 Fault Detection 28.3.1 Methodology 28.3.2 Experimental Results 28.4 Fault Diagnosis 28.4.1 Methodology 28.4.2 Experimental Results 28.5 Reconfiguration 29 LMN Toolbox 29.1 Termination Criteria 29.1.1 Corrected AIC 29.1.2 Corrected BIC 29.1.3 Validation 29.1.4 Maximum Number of Local Models 29.1.5 Effective Number of Parameters 29.1.6 Maximum Training Time 29.2 Polynominal Degree of Local Models 29.3 Dynamic Models 29.3.1 Nonlinear Orthonormal Basis Function Models 29.4 Different Input Spaces x and z 29.5 Smoothness 29.6 Data Weighting 29.7 Visualization and Simplified Tool A Vectors and Matrices A.1 Vector and Matrix Derivatives A.2 Gradient, Hessian, and Jacobian B Statistics B.1 Deterministic and Random Variables B.2 Probability Density Function (pdf) B.3 Stochastic Processes and Ergodicity B.4 Expectation B.5 Variance B.6 Correlation and Covariance B.7 Properties of Estimators References Index