دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4th ed
نویسندگان: Boyd. Robert W
سری:
ISBN (شابک) : 9780128110027, 0128110031
ناشر: Elsevier Science & Technology; Academic Press
سال نشر: 2020
تعداد صفحات: 626
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب اپتیک غیرخطی: اپتیک غیرخطی، کتاب های الکترونیکی
در صورت تبدیل فایل کتاب Nonlinear optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اپتیک غیرخطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جلد جلو -- اپتیک غیرخطی -- حق چاپ -- مطالب -- پیشگفتار بر ویرایش چهارم -- پیشگفتار بر ویرایش سوم -- پیشگفتار ویرایش دوم -- مقدمه بر چاپ اول -- 1 حساسیت نوری غیرخطی -- 1.1 مقدمه ای بر اپتیک غیرخطی -- 1.2 توضیحات فرآیندهای نوری غیرخطی -- 1.2.1 نسل دوم هارمونیک -- 1.2.2 تولید مجموع و اختلاف فرکانس -- 1.2.3 تولید مجموع فرکانس -- 1.2.4 Difference-Fre نسل -- 1.2.5 نوسان پارامتری نوری -- 1.2.6 فرآیندهای نوری غیرخطی مرتبه سوم
Front Cover -- Nonlinear Optics -- Copyright -- Contents -- Preface to the Fourth Edition -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- 1 The Nonlinear Optical Susceptibility -- 1.1 Introduction to Nonlinear Optics -- 1.2 Descriptions of Nonlinear Optical Processes -- 1.2.1 Second-Harmonic Generation -- 1.2.2 Sum- and Difference-Frequency Generation -- 1.2.3 Sum-Frequency Generation -- 1.2.4 Difference-Frequency Generation -- 1.2.5 Optical Parametric Oscillation -- 1.2.6 Third-Order Nonlinear Optical Processes
Cover Nonlinear Optics Copyright Dedication Contents Preface to the Fourth Edition Preface to the Third Edition Preface to the Second Edition Preface to the First Edition 1 The Nonlinear Optical Susceptibility 1.1 Introduction to Nonlinear Optics 1.2 Descriptions of Nonlinear Optical Processes 1.2.1 Second-Harmonic Generation 1.2.2 Sum- and Difference-Frequency Generation 1.2.3 Sum-Frequency Generation 1.2.4 Difference-Frequency Generation 1.2.5 Optical Parametric Oscillation 1.2.6 Third-Order Nonlinear Optical Processes 1.2.7 Third-Harmonic Generation 1.2.8 Intensity-Dependent Refractive Index Self-Focusing 1.2.9 Third-Order Interactions (General Case) 1.2.10 Parametric versus Nonparametric Processes 1.2.11 Saturable Absorption Optical Bistability 1.2.12 Two-Photon Absorption 1.2.13 Stimulated Raman Scattering 1.3 Formal Definition of the Nonlinear Susceptibility 1.4 Nonlinear Susceptibility of a Classical Anharmonic Oscillator 1.4.1 Noncentrosymmetric Media 1.4.2 Miller\'s Rule 1.4.3 Centrosymmetric Media 1.5 Properties of the Nonlinear Susceptibility 1.5.1 Reality of the Fields 1.5.2 Intrinsic Permutation Symmetry 1.5.3 Symmetries for Lossless Media 1.5.4 Field Energy Density for a Nonlinear Medium 1.5.5 Kleinman\'s Symmetry 1.5.6 Contracted Notation 1.5.7 Effective Value of d (deff) 1.5.8 Spatial Symmetry of the Nonlinear Medium 1.5.9 Influence of Spatial Symmetry on the Linear Optical Properties of a Material Medium 1.5.10 Influence of Inversion Symmetry on the Second-Order Nonlinear Response 1.5.11 Influence of Spatial Symmetry on the Second-Order Susceptibility 1.5.12 Number of Independent Elements of χ(2)ijk ( ω3, ω2, ω1) 1.5.13 Distinction between Noncentrosymmetric and Cubic Crystal Classes 1.5.14 Distinction between Noncentrosymmetric and Polar Crystal Classes 1.5.15 Influence of Spatial Symmetry on the Third-Order Nonlinear Response 1.6 Time-Domain Description of Optical Nonlinearities 1.7 Kramers-Kronig Relations in Linear and Nonlinear Optics 1.7.1 Kramers-Kronig Relations in Linear Optics 1.7.2 Kramers-Kronig Relations in Nonlinear Optics Problems References General References Further Reading on Nonlinear Optics Further Reading on Group Theory and Crystal Symmetry Suggested Further Reading on Kramers-Kronig Relations 2 Wave-Equation Description of Nonlinear Optical Interactions 2.1 The Wave Equation for Nonlinear Optical Media 2.2 The Coupled-Wave Equations for Sum-Frequency Generation 2.2.1 Phase-Matching Considerations 2.3 Phase Matching Angle Tuning Temperature Tuning 2.4 Quasi-Phase-Matching (QPM) 2.5 The Manley–Rowe Relations 2.6 Sum-Frequency Generation 2.7 Second-Harmonic Generation 2.7.1 Applications of Second-Harmonic Generation Surface Nonlinear Optics Nonlinear Optical Microscopy 2.8 Difference-Frequency Generation and Parametric Amplification 2.9 Optical Parametric Oscillators Threshold for Parametric Oscillation Wavelength Tuning of an OPO 2.9.1 Influence of Cavity Mode Structure on OPO Tuning 2.10 Nonlinear Optical Interactions with Focused Gaussian Beams 2.10.1 Paraxial Wave Equation 2.10.2 Gaussian Beams 2.10.3 Harmonic Generation Using Focused Gaussian Beams 2.11 Nonlinear Optics at an Interface 2.12 Advanced Phase Matching Methods Types of Phase Matching Phase Matching of Spontaneous Parametric Down Conversion (SPDC) Tilted-Pulse-Front Method for the Generation of THz Radiation Problems References General References Section 3: Phase-Matching Section 4: Quasi-Phase-Matching Section 7: Applications of Second-Harmonic Generation Section 9: Optical Parametric Oscillators Section 10: Nonlinear Optical Interactions with Focused Gaussian Beams Section 11: Nonlinear Optics at an Interface Recommended Textbooks on Quantum Nonlinear Optics Books that Treat Crystal Optics Recommended Further Reading on Quantum Nonlinear Optics Suggested Further Readings on THz Pulse Generation 3 Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility 3.1 Introduction 3.2 Schrödinger Equation Calculation of the Nonlinear Optical Susceptibility 3.2.1 Energy Eigenstates 3.2.2 Perturbation Solution to Schrödinger\'s Equation 3.2.3 Linear Susceptibility 3.2.4 Second-Order Susceptibility 3.2.5 Third-Order Susceptibility 3.2.6 Third-Harmonic Generation in Alkali Metal Vapors 3.3 Density Matrix Formulation of Quantum Mechanics 3.3.1 Example: Two-Level Atom 3.4 Perturbation Solution of the Density Matrix Equation of Motion 3.5 Density Matrix Calculation of the Linear Susceptibility 3.5.1 Linear Response Theory 3.6 Density Matrix Calculation of the Second-Order Susceptibility 3.6.1 χ(2) in the Limit of Nonresonant Excitation 3.7 Density Matrix Calculation of the Third-Order Susceptibility 3.8 Electromagnetically Induced Transparency 3.9 Local-Field Effects in the Nonlinear Optics 3.9.1 Local-Field Effects in Linear Optics 3.9.2 Local-Field Effects in Nonlinear Optics Problems References Books on Quantum Mechanics Quantum-Mechanical Models of the Nonlinear Optical Susceptibility Further Reading on Quantum-Mechanical Models of the Nonlinear Optical Susceptibility Electromagnetically Induced Transparency (EIT) Suggested Furth Reading: Reviews of EIT Local-Field Effects in Nonlinear Optics 4 The Intensity-Dependent Refractive Index 4.1 Descriptions of the Intensity-Dependent Refractive Index 4.2 Tensor Nature of the Third-Order Susceptibility 4.2.1 Propagation through Isotropic Nonlinear Media 4.3 Nonresonant Electronic Nonlinearities 4.3.1 Classical, Anharmonic Oscillator Model of Electronic Nonlinearities 4.3.2 Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities 4.3.3 χ(3) in the Low-Frequency Limit 4.4 Nonlinearities Due to Molecular Orientation 4.4.1 Tensor Properties of χ(3) for the Molecular Orientation Effect 4.5 Thermal Nonlinear Optical Effects 4.5.1 Thermal Nonlinearities with Continuous-Wave Laser Beams 4.5.2 Thermal Nonlinearities with Pulsed Laser Beams 4.6 Semiconductor Nonlinearities 4.6.1 Nonlinearities Resulting from Band-to-Band Transitions Free-Electron Response Modification of Optical Properties by Plasma Screening Effects Change of Optical Properties Due to Band-Filling Effects Change in Optical Properties Due to Band-Gap Renormalization 4.6.2 Nonlinearities Involving Virtual Transitions 4.7 Concluding Remarks Problems References General References Recommended Additional Reading Tensor Nature of the Third-Order Susceptibility Thermal Nonlinear Optical Effects Semiconductor Nonlinearities Recommended Additional Reading Concluding Remarks 5 Molecular Origin of the Nonlinear Optical Response 5.1 Nonlinear Susceptibilities Calculated Using Time-Independent Perturbation Theory 5.1.1 Hydrogen Atom 5.1.2 General Expression for the Nonlinear Susceptibility in the Quasi-Static Limit 5.2 Semiempirical Models of the Nonlinear Optical Susceptibility Model of Boling, Glass, and Owyoung 5.3 Nonlinear Optical Properties of Conjugated Polymers 5.4 Bond-Charge Model of Nonlinear Optical Properties 5.5 Nonlinear Optics of Chiral Media 5.6 Nonlinear Optics of Liquid Crystals Problems References Suggested Books on Molecular Nonlinear Optics for Further Reading Section 5.1. Nonlinear Susceptibility …Time-Independent Perturbation Theory Section 5.2. Semiempirical Models Section 5.3. Nonlinear Optics of Conjugated Polymers Section 5.4. Bond Charge Model Section 5.5. Nonlinear Optics of Chiral Media Section 5.6. Liquid Crystal Nonlinear Optics 6 Nonlinear Optics in the Two-Level Approximation 6.1 Introduction 6.2 Density Matrix Equations of Motion for a Two-Level Atom 6.2.1 Closed Two-Level Atom 6.2.2 Open Two-Level Atom 6.2.3 Two-Level Atom with a Non-Radiatively Coupled Third Level 6.3 Steady-State Response of a Two-Level Atom to a Monochromatic Field 6.4 Optical Bloch Equations 6.4.1 Harmonic Oscillator Form of the Density Matrix Equations 6.4.2 Adiabatic-Following Limit 6.5 Rabi Oscillations and Dressed Atomic States 6.5.1 Rabi Solution of the Schrödinger Equation 6.5.2 Solution for an Atom Initially in the Ground State 6.5.3 Dressed States 6.5.4 Inclusion of Relaxation Phenomena 6.6 Optical Wave Mixing in Two-Level Systems 6.6.1 Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of Pump and Probe Fields 6.6.2 Nonlinear Susceptibility and Coupled-Amplitude Equations Problems References 7 Processes Resulting from the Intensity-Dependent Refractive Index 7.1 Self-Focusing of Light and Other Self-Action Effects 7.1.1 Self-Trapping of Light 7.1.2 Mathematical Description of Self-Action Effects 7.1.3 Laser Beam Breakup into Many Filaments Conditions for the Occurrence of Nonlinear Beam Breakup 7.1.4 Self-Action Effects with Pulsed Laser Beams Moving Focus Model Transient Self-Focusing 7.2 Optical Phase Conjugation 7.2.1 Aberration Correction by Phase Conjugation 7.2.2 Phase Conjugation by Degenerate Four-Wave Mixing 7.2.3 Polarization Properties of Phase Conjugation 7.3 Optical Bistability and Optical Switching 7.3.1 Absorptive Bistability 7.3.2 Refractive Bistability 7.3.3 Optical Switching 7.4 Two-Beam Coupling 7.5 Pulse Propagation and Temporal Solitons 7.5.1 Self-Phase Modulation 7.5.2 Pulse Propagation Equation 7.5.3 Temporal Optical Solitons Problems References Section 7.1 Self-Focusing of Light and Other Self-Action Effect Suggested Additional Reading on Self-Action Effects Section 7.2 Optical Phase Conjugation Polarization Properties of Phase Conjugation Section 7.3 Optical Bistability Section 7.4 Two-Beam Coupling Section 7.5 Pulse Propagation and Temporal Solitons 8 Spontaneous Light Scattering and Acoustooptics 8.1 Features of Spontaneous Light Scattering 8.1.1 Fluctuations as the Origin of Light Scattering 8.1.2 Scattering Coefficient 8.1.3 Scattering Cross Section 8.2 Microscopic Theory of Light Scattering 8.3 Thermodynamic Theory of Scalar Light Scattering 8.3.1 Ideal Gas 8.3.2 Spectrum of the Scattered Light 8.3.3 Brillouin Scattering 8.3.4 Stokes Scattering (First Term in Eq. (8.3.36)) 8.3.5 Anti-Stokes Scattering (Second Term in Eq. (8.3.36)) 8.3.6 Rayleigh Center Scattering 8.4 Acoustooptics 8.4.1 Bragg Scattering of Light by Sound Waves 8.4.2 Raman-Nath Effect Problems References Recommended Further Reading on Light Scattering and Acoustooptics 9 Stimulated Brillouin and Stimulated Rayleigh Scattering 9.1 Stimulated Scattering Processes 9.2 Electrostriction 9.3 Stimulated Brillouin Scattering (Induced by Electrostriction) 9.3.1 Pump Depletion Effects in SBS 9.3.2 SBS Generator 9.3.3 Transient and Dynamical Features of SBS 9.4 Phase Conjugation by Stimulated Brillouin Scattering 9.5 Stimulated Brillouin Scattering in Gases 9.6 General Theory of Stimulated Brillouin and Stimulated Rayleigh Scattering 9.6.1 Appendix: Definition of the Viscosity Coefficients Problems References Suggested Further Reading on Stimulated Light Scattering Stimulated Brillouin Scattering 10 Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering 10.1 The Spontaneous Raman Effect 10.2 Spontaneous versus Stimulated Raman Scattering 10.3 Stimulated Raman Scattering Described by the Nonlinear Polarization 10.4 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering 10.4.1 Dispersionless, Nonlinear Medium without Gain or Loss 10.4.2 Medium without a Nonlinearity 10.4.3 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering 10.5 Coherent Anti-Stokes Raman Scattering 10.6 Stimulated Rayleigh-Wing Scattering 10.6.1 Polarization Properties of Stimulated Rayleigh-Wing Scattering Problems References Stimulated Raman Scattering Tensor Properties of Stimulated Raman Scattering Coherent Anti-Stokes Raman Scattering Stimulated Rayleigh-Wing Scattering 11 The Electrooptic and Photorefractive Effects 11.1 Introduction to the Electrooptic Effect 11.2 Linear Electrooptic Effect 11.3 Electrooptic Modulators 11.4 Introduction to the Photorefractive Effect 11.5 Photorefractive Equations of Kukhtarev et al. 11.6 Two-Beam Coupling in Photorefractive Materials 11.7 Four-Wave Mixing in Photorefractive Materials 11.7.1 Externally Self-Pumped Phase-Conjugate Mirror 11.7.2 Internally Self-Pumped Phase-Conjugate Mirror 11.7.3 Double Phase-Conjugate Mirror 11.7.4 Other Applications of Photorefractive Nonlinear Optics Problems References Electrooptic Effect Photorefractive Effect 12 Optically Induced Damage and Multiphoton Absorption 12.1 Introduction to Optical Damage 12.2 Avalanche-Breakdown Model 12.3 Influence of Laser Pulse Duration 12.4 Direct Photoionization 12.5 Multiphoton Absorption and Multiphoton Ionization 12.5.1 Theory of Single- and Multiphoton Absorption and Fermi\'s Golden Rule 12.5.2 Linear (One-Photon) Absorption 12.5.3 Two-Photon Absorption 12.5.4 Multiphoton Absorption Problems References Optical Damage Reviews of Optical Damage Optical Damage with Femtosecond Laser Pulses Multiphoton Absorption 13 Ultrafast and Intense-Field Nonlinear Optics 13.1 Introduction 13.2 Ultrashort-Pulse Propagation Equation 13.3 Interpretation of the Ultrashort-Pulse Propagation Equation 13.3.1 Self-Steepening 13.3.2 Space-Time Coupling 13.3.3 Supercontinuum Generation 13.4 Intense-Field Nonlinear Optics 13.5 Motion of a Free Electron in a Laser Field 13.6 High-Harmonic Generation 13.7 Tunnel Ionization and the Keldysh Model 13.8 Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics 13.9 Nonlinear Quantum Electrodynamics Problem References Sections 13.1 through 13.3: Ultrafast Nonlinear Optics Sections 13.4 and 13.5: Intense-Field Nonlinear Optics and Motion of a Free Electron Section 13.6: High-Harmonic Generation Section 13.7: Tunnel Ionization and the Keldysh Mechanism Section 13.9: Nonlinear Quantum Electrodynamics 14 Nonlinear Optics of Plasmonic Systems 14.1 Introduction to Plasmonics 14.2 Simple Derivation of the Plasma Frequency 14.3 The Drude Model 14.4 Optical Properties of Gold 14.5 Surface Plasmon Polaritons 14.6 Electric Field Enhancement in Plasmonic Systems Problems References Plasma Frequency and Drude Model Optical Properties of Gold Surface Plasmon Polaritons Electric Field Enhancement in Plasmonic Systems Appendices Appendix A The SI System of Units A.1 Energy Relations and Poynting\'s Theorem A.2 The Wave Equation A.3 Boundary Conditions Appendix B The Gaussian System of Units Appendix C Systems of Units in Nonlinear Optics C.1 Conversion between the Systems Appendix D Relationship between Intensity and Field Strength Appendix E Physical Constants References Index Back Cover