دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تجزیه و تحلیل عملکرد ویرایش: نویسندگان: Eberhard Zeidler سری: Zeidler, Eberhard//Nonlinear Functional Analysis and Its Applications ISBN (شابک) : 9783540909149, 0387909141 ناشر: Springer-Verlag Berlin and Heidelberg GmbH & Co. K سال نشر: 1986 تعداد صفحات: 1007 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب تجزیه و تحلیل عملکرد غیرخطی: برنامه های کاربردی برای فیزیک ریاضی: ریاضیات، تحلیل تابعی
در صورت تبدیل فایل کتاب Nonlinear functional analysis: Applications to mathematical physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل عملکرد غیرخطی: برنامه های کاربردی برای فیزیک ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این اولین مورد از یک نمایشگاه پنج جلدی از اصول اصلی تحلیل تابعی غیرخطی و کاربردهای آن در علوم طبیعی، اقتصاد، و تحلیل عددی است. ارائه به صورت مستقل و برای افراد غیرمتخصص قابل دسترسی است. از جمله مباحث جلد اول می توان به دو قضیه اصلی نقطه ثابت Banach و Schauder، حساب دیفرانسیل و انتگرال در فضاهای Banach، قضیه تابع ضمنی، روش نیوتن، نظریه انشعاب تحلیلی، قضایای نقطه ثابت برای نگاشت چند ارزشی، عملگرهای غیر انبساطی و متراکم، نقشه برداری اشاره کرد. درجه و شاخص نقطه ثابت و کاربردهای آنها، نقشه های تحلیلی و قضایای نقطه ثابت مجانبی. این کتاب شامل کاربردهای متعددی در زمینه هایی مانند معادلات دیفرانسیل معمولی و جزئی، معادلات انتگرال و نظریه بازی است. بسیاری از تمرین ها و یک کتابشناسی جامع مکمل متن هستند.
This is the first of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and accessible to the nonspecialist. Among the topics of Volume I are the two basic fixed-point theorems of Banach and Schauder, calculus in Banach spaces, the implicit function theorem, Newton's method, analytic bifurcation theory, fixed-point theorems for multivalued mappings, nonexpansive and condensing operators, mapping degree and fixed-point index and their applications, analytic maps, and asymptotic fixed-point theorems. The book contains numerous applications to such areas as ordinary and partial differential equations, integral equations, and game theory. Many exercises and a comprehensive bibliography complement the text.
Contents Preface vii Introduction 1 FUNDAMENTAL FIXED-POINT PRINCIPLES CHAPTER 1 The Banach Fixed-Point Theorem and Iterative Methods 15 1.1. The Banach Fixed-Point Theorem 16 1.2. Continuous Dependence on a Parameter 18 1.3. The Significance of the Banach Fixed-Point Theorem 19 1.4. Applications to Nonlinear Equations 22 1.5. Accelerated Convergence and Newton\'s Method 25 1.6. The Picard-Lindelöf Theorem 27 1.7. The Main Theorem for Iterative Methods for Linear Operator Equations 30 1.8. Applications to Systems of Linear Equations 35 1.9. Applications to Linear Integral Equations 36 CHAPTER 2 The Schauder Fixed-Point Theorem and Compactness 48 2.1. Extension Theorem 49 2.2. Retracts 50 2.3. The Brouwer Fixed-Point Theorem 51 2.4. Existence Principle for Systems of Equations 52 2.5. Compact Operators 53 2.6. The Schauder Fixed-Point Theorem 56 2.7. Peano\'s Theorem 57 2.8. Integral Equations with Small Parameters 58 2.9. Systems of Integral Equations and Semilinear Differential Equations 60 2.1 o. A General Strategy 61 2.11. Existence Principle for Systems of Inequalities 61 APPLICATIONS OF THE FUNDAMENTAL FIXED-POINT PRINCIPLES CHAPTER 3 Ordinary Differential Equations in ${\\bf\\rm B}$-spaces 73 3.1. Integration of Vector Functions of One Real Variable $t$ 75 3.2. Differentiation of Vector Functions of One Real Variable $t$ 76 3.3. Generalized Picard- Lindelof Theorem 78 3.4. Generalized Peano Theorem 81 3.5. Gronwall\'s Lemma 82 3.6. Stability of Solutions and Existence of Periodic Solutions 84 3.7. Stability Theory and Plane Vector Fields, Electrical Circuits, Limit Cycles 91 3.8. Perspectives 99 CHAPTER 4 Differential Calculus and the Implicit Function Theorem 130 4.1. Formal Differential Calculus 131 4.2. The Derivatives of Frechet and Gâteaux 135 4.3. Sum Rule, Chain Rule, and Product Rule 138 4.4. Partial Derivatives 140 4.5. Higher Differentials and Higher Derivatives 141 4.6. Generalized Taylor\'s Theorem 148 4.7. The Implicit Function Theorem 149 4.8. Applications of the Implicit Function Theorem 155 4.9. Attracting and Repelling Fixed Points and Stability 157 4.10. Applications to Biological Equilibria 162 4.11. The Continuously Differentiable Dependence of the Solutions of Ordinary Differential Equations in ${\\bf\\rm B}$-spaces on the Initial Values and on the Parameters 165 4.12. The Generalized Frobenius Theorem and Total Differential Equations 166 4.13. Diffeomorphisms and the Local Inverse Mapping Theorem 171 4.14. Proper Maps and the Global Inverse Mapping Theorem 173 4.15. The Surjective Implicit Function Theorem 176 4.16. Nonlinear Systems of Equations, Subimmersions, and the Rank Theorem 177 4.17. A Look at Manifolds 179 4.18. Submersions and a Look at the Sard-Smale Theorem 183 4.19. The Parametrized Sard Theorem and Constructive Fixed-Point Theory 188 CHAPTER 5 Newton\'s Method 206 5.1. A Theorem on Local Convergence 208 5.2. The Kantorovic Semi-Local Convergence Theorem 210 CHAPTER 6 Continuation with Respect to a Parameter 226 6.1. The Continuation Method for Linear Operators 229 6.2. B-spaces of Holder Continuous Functions 230 6.3. Applications to Linear Partial Differential Equations 233 6.4. Functional-Analytic Interpretation of the Existence Theorem and its Generalizations 235 6.5. Applications to Semi-linear Differential Equations 239 6.6. The Implicit Function Theorem and the Continuation Method 241 6.7. Ordinary Differential Equations in ${\\bf\\rm B}$-spaces and the Continuation Method 243 6.8. The Leray-Schauder Principle 245 6.9. Applications to Quasi-linear Elliptic Differential Equations 246 CHAPTER 7 Positive Operators 269 7.1. Ordered B-spaces 275 7.2. Monotone Increasing Operators 277 7.3. The Abstract Gronwall Lemma and its Applications to Integral Inequalities 281 7.4. Supersolutions, Subsolutions, Iterative Methods, and Stability 282 7.5. Applications 285 7.6. Minorant Methods and Positive Eigensolutions 286 7.7. Applications 288 7.8. The Krein-Rutman Theorem and its Applications 289 7.9. Asymptotic Linear Operators 296 7.10. Main Theorem for Operators of Monotone Type 298 7.11. Application to a Heat Conduction Problem 301 7.12. Existence of Three Solutions 304 7.13. Main Theorem for Abstract Hammerstein Equations in Ordered B-spaces 307 7.14. Eigensolutions of Abstract Hammerstein Equations, Bifurcation, Stability, and the Nonlinear Krein-Rutman Theorem 312 7.15. Applications to Hammerstein Integral Equations 316 7.16. Applications to Semi-linear Elliptic Boundary-Value Problems 317 7.17. Application to Elliptic Equations with Nonlinear Boundary Conditions 326 7.18. Applications to Boundary Initial-Value Problems for Parabolic Differential Equations and Stability 329 CHAPTER 8 Analytic Bifurcation Theory 350 8.1. A Necessary Condition for Existence of a Bifurcation Point 358 8.2. Analytic Operators 360 8.3. An Analytic Majorant Method 363 8.4. Fredholm Operators 365 8.5. The Spectrum of Compact Linear Operators (Riesz-Schauder Theorem) 372 8.6. The Branching Equations of Ljapunov-Schmidt 375 8.7. The Main Theorem on the Generic Bifurcation from Simple Zeros 381 8.8. Applications to Eigenvalue Problems 387 8.9. Applications to Integral Equations 387 8.10. Applications to Differential Equations 389 8.11. The Main Theorem on Generic Bifurcation for Multiparametric Operator Equations-The Bunch Theorem 391 8.12. Main Theorem for Regular Semi-linear Equations 398 8.13. Parameter-Induced Oscillation 401 8.14. Self-Induced Oscillations and Limit Cycles 408 8.15. Hopf Bifurcation 411 8.16. The Main Theorem on Generic Bifurcation from Multiple Zeros 416 8.17. Stability of Bifurcation Solutions 423 8.18. Generic Point Bifurcation 428 CHAPTER 9 Fixed Points of Multi-valued Maps 447 9.1. Generalized Banach Fixed-Point Theorem 449 9.2. Upper and Lower Semi-continuity of Multivalued Maps 450 9.3. Generalized Schauder Fixed-Point Theorem 452 9.4. Variational Inequalities and the Browder Fixed-Point Theorem 453 9.5. An Extremal Principle 456 9.6. The Minimax Theorem and Saddle Points 457 9.7. Applications in Game Theory 461 9.8. Selections and the Marriage Theorem 463 9.9. Michael\'s Selection Theorem 466 9.10. Application to the Generalized Peano Theorem for Differential Inclusions 468 CHAPTER 10 Nonexpansive Operators and Iterative Methods 473 10.1. Uniformly Convex B-spaces 474 10.2. Demiclosed Operators 476 10.3. The Fixed-Point Theorem of Browder, Gohde, and Kirk 478 10.4. Demicompact Operators 479 10.5. Convergence Principles in ${\\bf\\rm B}$-spaces 480 10.6. Modified Successive Approximations 481 10.7. Application to Periodic Solutions 482 CHAPTER 11 Condensing Maps and the Bourbaki-Kneser Fixed-Point Theorem 488 11.1. A N oncompactness Measure 492 11.2. Applications to Generalized Interval Nesting 495 11.3. Condensing Maps 496 11.4. Operators with Closed Range and an Approximation Technique for Constructing Fixed Points 497 11.5. Sadovskii\'s Fixed-Point Theorem for Condensing Maps 500 11.6. Fixed-Point Theorems for Perturbed Operators 501 11.7. Application to Differential Equations in ${\\bf\\rm B}$-spaces 502 11.8. The Bourbaki-Kneser Fixed-Point Theorem 503 11.9. The Fixed-Point Theorems of Amann and Tarski 506 11.10. Application to Interval Arithmetic 508 11.11. Application to Formal Languages 510 THE MAPPING DEGREE AND THE FIXED-POINT INDEX CHAPTER 12 The Leray-Schauder Fixed-Point Index 519 12.1. Intuitive Background and Basic Concepts 519 12.2. Homotopy 527 12.3. The System of Axioms 529 12.4. An Approximation Theorem 533 12.5. Existence and Uniqueness of the Fixed-Point Index in ${\\mathbb R}^N$ 535 12.6. Proof of Theorem 12.A. 537 12.7. Existence and Uniqueness of the Fixed-Point Index in ${\\bf\\rm B}$-spaces 542 12.8. Product Theorem and Reduction Theorem 546 CHAPTER 13 Applications of the Fixed-Point Index 554 13.1. A General Fixed-Point Principle 555 13.2. A General Eigenvalue Principle 557 13.3. Existence of Multiple Solutions 560 13.4. A Continuum of Fixed Points 564 13.5. Applications to Differential Equations 566 13.6. Properties of the Mapping Degree 568 13.7. The Leray Product Theorem and Homeomorphisms 574 13.8. The Jordan-Brouwer Separation Theorem and Brouwer\'s Invariance of Dimension Theorem 580 13.9. A Brief Glance at the History of Mathenlatics 582 13.10. Topology and Intuition 592 13.11. Generalization of the Mapping Degree 600 CHAPTER 14 The Fixed-Point Index of Differentiable and Analytic Maps 613 14.1. The Fixed-Point Index of Classical Analytic Functions 616 14.2. The Leray-Schauder Index Theorem 618 14.3. The Fixed-Point Index of Analytic Mappings on Complex ${\\bf\\rm B}$-spaces 621 14.4. The Schauder Fixed-Point Theorem with Uniqueness 624 14.5. Solution of Analytic Operator Equations 625 14.6. The Global Continuation Principle of Leray-Schauder 628 14.7. Unbounded Solution Components 630 14.8. Applications to Systems of Equations 633 14.9. Applications to Integral Equations 633 14.10. Applications to Boundary-Value Problems 634 14.11. Applications to Integral Power Series 634 CHAPTER 15 Topological Bifurcation Theory 653 15.1. The Index Jump Principle 657 15.2. Applications to Systems of Equations 657 15.3. Duality Between the Index Jump Principle and the Leray-Schauder Continuation Principle 658 15.4. The Geometric Heart of the Continuation Method 661 15.5. Stability Change and Bifurcation 663 15.6. Local Bifurcation 665 15.7. Global Bifurcation 667 15.8. Application to Systems of Equations 669 15.9. Application to Integral Equations 670 15.10. Application to Differential Equations 671 15.11. Application to Bifurcation at Infinity 673 15.12. Proof of the Main Theorem 675 15.13. Preventing Secondary Bifurcation 681 CHAPTER 16 Essential Mappings and the Borsuk Antipodal Theorem 692 16.1. Intuitive Introduction 692 16.2. Essential Mappings and their Homotopy Invariance 697 16.3. The Antipodal Theorem 700 16.4. The Invariance of Domain Theorem and Global Homeomorphisms 704 16.5. The Borsuk-Ulam Theorem and its Applications 708 16.6. The Mapping Degree and Essential Maps 710 16.7. The Hopf Theorem 711 16.8. A Glance at Homotopy Theory 714 CHAPTER 17 Asymptotic Fixed-Point Theorems 723 17.1. The Generalized Banach Fixed-Point Theorem 724 17.2. The Fixed-Point Index of Iterated Mappings 724 17.3. The Generalized Schauder Fixed-Point Theorem 725 17.4. Application to Dissipative Dynamical Systems 725 17.5. Perspectives 726 Appendix 744 References 808 List of Symbols 851 List of Theorems 859 List of the Most Important Definitions 862 Schematic Overviews 864 General References to the Literature 865 List of Important Principles 866 Contents of the Other Parts 871 Index 877