دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [6 ed.]
نویسندگان: Govind P. Agrawal
سری:
ISBN (شابک) : 0128170425, 9780128170427
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 728
[717]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Nonlinear Fiber Optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیبر نوری غیر خطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیبر نوری غیرخطی، ویرایش ششم، یک حسابداری به روز از پدیده های غیرخطی رخ داده در داخل فیبرهای نوری در زیرساخت های مخابراتی و در زمینه پزشکی ارائه می دهد. این نسخه جدید شامل یک بهروزرسانی کلی برای انعکاس جدیدترین تحقیقات، بهروزرسانیهای گسترده به فصل 13 در مورد نسل Supercontinuum است که منعکسکننده استفاده از فیبرهای کالکوژنید است که Supercontinuum را تا ناحیه فروسرخ میانی گسترش میدهد، و فصل جدیدی به اپتیک غیرخطی چند حالته اختصاص دارد. و الیاف چند هسته ای این کتاب برای محققان و دانشجویان فارغ التحصیل در فوتونیک، مهندسی نوری و مهندسی ارتباطات ایده آل است.
Nonlinear Fiber Optics, Sixth Edition, provides an up-to-date accounting of the nonlinear phenomena occurring inside optical fibers in telecommunications infrastructure and in the medical field. This new edition includes a general update to reflect the most recent research, extensive updates to chapter 13 on Supercontinuum Generation that reflect the use of chalcogenide fibers that extend Supercontinuum into the mid-infrared region, and a new chapter devoted to the nonlinear optics of multimode and multicore fibers. This book is ideal for researchers and graduate students in photonics, optical engineering and communication engineering.
Contents Author biography Preface 1 Introduction 1.1 Historical perspective 1.2 Fiber characteristics 1.2.1 Material and fabrication 1.2.2 Fiber losses 1.2.3 Chromatic dispersion 1.2.4 Polarization-mode dispersion 1.3 Fiber nonlinearities 1.3.1 Nonlinear refraction 1.3.2 Stimulated inelastic scattering 1.3.3 Importance of nonlinear effects 1.4 Overview Problems References 2 Pulse propagation in fibers 2.1 Maxwell's equations 2.2 Fiber modes 2.2.1 Eigenvalue equation 2.2.2 Characteristics of the fundamental mode 2.3 Pulse-propagation equation 2.3.1 Nonlinear wave equation 2.3.2 Higher-order nonlinear effects 2.3.3 Raman response function and its impact 2.4 Numerical methods 2.4.1 Split-step Fourier method 2.4.2 Finite-difference methods Problems References 3 Group-velocity dispersion 3.1 Different propagation regimes 3.2 Dispersion-induced pulse broadening 3.2.1 Gaussian pulses 3.2.2 Chirped Gaussian pulses 3.2.3 Hyperbolic secant pulses 3.2.4 Super-Gaussian pulses 3.2.5 Experimental results 3.3 Third-order dispersion 3.3.1 Chirped Gaussian pulses 3.3.2 Broadening factor 3.3.3 Ultrashort-pulse measurements 3.4 Dispersion management 3.4.1 Dispersion compensation 3.4.2 Compensation of third-order dispersion 3.4.3 Dispersion-varying fibers Problems References 4 Self-phase modulation 4.1 SPM-induced spectral changes 4.1.1 Nonlinear phase shift 4.1.2 Changes in pulse spectra 4.1.3 Effect of pulse shape and initial chirp 4.1.4 Effect of partial coherence 4.2 Effect of group-velocity dispersion 4.2.1 Pulse evolution 4.2.2 Broadening factor 4.2.3 Optical wave breaking 4.2.4 Experimental results 4.2.5 Effect of third-order dispersion 4.2.6 SPM effects in fiber amplifiers 4.3 Semianalytic techniques 4.3.1 Moment method 4.3.2 Variational method 4.3.3 Specific analytic solutions 4.4 Higher-order nonlinear effects 4.4.1 Self-steepening 4.4.2 Effect of GVD on optical shocks 4.4.3 Intrapulse Raman scattering Problems References 5 Optical solitons 5.1 Modulation instability 5.1.1 Linear stability analysis 5.1.2 Gain spectrum 5.1.3 Experimental observation 5.1.4 Ultrashort pulse generation 5.1.5 Impact of loss and third-order dispersion 5.1.6 Spatial modulation of fiber parameters 5.2 Fiber solitons 5.2.1 Inverse scattering method 5.2.2 Fundamental soliton 5.2.3 Second and higher-order solitons 5.2.4 Experimental confirmation 5.2.5 Soliton stability 5.3 Other types of solitons 5.3.1 Dark solitons 5.3.2 Bistable solitons 5.3.3 Dispersion-managed solitons 5.3.4 Optical similaritons 5.4 Perturbation of solitons 5.4.1 Perturbation methods 5.4.2 Fiber loss 5.4.3 Soliton amplification 5.4.4 Soliton interaction 5.5 Higher-order effects 5.5.1 Moment equations for pulse parameters 5.5.2 Third-order dispersion 5.5.3 Self-steepening 5.5.4 Intrapulse Raman scattering 5.6 Propagation of femtosecond pulses Problems References 6 Polarization effects 6.1 Nonlinear birefringence 6.1.1 Origin of nonlinear birefringence 6.1.2 Coupled-mode equations 6.1.3 Elliptically birefringent fibers 6.2 Nonlinear phase shift 6.2.1 Nondispersive XPM 6.2.2 Optical Kerr effect 6.2.3 Pulse shaping 6.3 Evolution of polarization state 6.3.1 Analytic solution 6.3.2 Poincaré-sphere representation 6.3.3 Polarization instability 6.3.4 Polarization chaos 6.4 Vector modulation instability 6.4.1 Low-birefringence fibers 6.4.2 High-birefringence fibers 6.4.3 Isotropic fibers 6.4.4 Experimental results 6.5 Birefringence and solitons 6.5.1 Low-birefringence fibers 6.5.2 High-birefringence fibers 6.5.3 Soliton-dragging logic gates 6.5.4 Vector solitons 6.6 Higher-order effects 6.6.1 Extended coupled-mode equations 6.6.2 Impact of TOD and Raman nonlinearity 6.6.3 Interaction of two vector solitons 6.7 Random birefringence 6.7.1 Polarization-mode dispersion 6.7.2 Vector form of the NLS equation 6.7.3 Effects of PMD on solitons Problems References 7 Cross-phase modulation 7.1 XPM-induced nonlinear coupling 7.1.1 Nonlinear refractive index 7.1.2 Coupled NLS equations 7.2 XPM-induced modulation instability 7.2.1 Linear stability analysis 7.2.2 Experimental results 7.3 XPM-paired solitons 7.3.1 Bright-dark soliton pair 7.3.2 Bright-gray soliton pair 7.3.3 Periodic solutions 7.3.4 Multiple coupled NLS equations 7.4 Spectral and temporal effects 7.4.1 Asymmetric spectral broadening 7.4.2 Asymmetric temporal changes 7.4.3 Higher-order nonlinear effects 7.5 Applications of XPM 7.5.1 XPM-induced pulse compression 7.5.2 XPM-induced optical switching 7.5.3 XPM-induced wavelength conversion 7.6 Polarization effects 7.6.1 Vector theory of XPM 7.6.2 Polarization evolution 7.6.3 Polarization-dependent spectral broadening 7.6.4 Pulse trapping and compression 7.6.5 XPM-induced wave breaking 7.7 XPM effects in birefringent fibers 7.7.1 Fibers with low birefringence 7.7.2 Fibers with high birefringence 7.8 Two counterpropagating waves Problems References 8 Stimulated Raman scattering 8.1 Basic concepts 8.1.1 Raman-gain spectrum 8.1.2 Raman threshold 8.1.3 Coupled amplitude equations 8.1.4 Effect of four-wave mixing 8.2 Quasi-continuous SRS 8.2.1 Single-pass Raman generation 8.2.2 Raman fiber lasers 8.2.3 Raman fiber amplifiers 8.2.4 Raman-induced crosstalk 8.3 SRS with short pump pulses 8.3.1 Pulse-propagation equations 8.3.2 Nondispersive case 8.3.3 Effects of GVD 8.3.4 Raman-induced index changes 8.3.5 Experimental results 8.3.6 Synchronously pumped Raman lasers 8.3.7 Short-pulse Raman amplification 8.4 Soliton effects 8.4.1 Raman solitons 8.4.2 Raman soliton lasers 8.4.3 Soliton-effect pulse compression 8.5 Polarization effects 8.5.1 Vector theory of Raman amplification 8.5.2 PMD effects on Raman amplification Problems References 9 Stimulated Brillouin scattering 9.1 Basic concepts 9.1.1 Physical process 9.1.2 Brillouin-gain spectrum 9.2 Quasi-CW SBS 9.2.1 Brillouin threshold 9.2.2 Polarization effects 9.2.3 Techniques for controlling the SBS threshold 9.2.4 Experimental results 9.3 Brillouin fiber amplifiers 9.3.1 Gain saturation 9.3.2 Amplifier design and applications 9.4 SBS dynamics 9.4.1 Coupled amplitude equations 9.4.2 SBS with Q-switched pulses 9.4.3 SBS-induced index changes 9.4.4 Relaxation oscillations 9.4.5 Modulation instability and chaos 9.5 Brillouin fiber lasers 9.5.1 CW operation 9.5.2 Pulsed operation Problems References 10 Four-wave mixing 10.1 Origin of four-wave mixing 10.2 Theory of four-wave mixing 10.2.1 Coupled amplitude equations 10.2.2 Approximate solution 10.2.3 Effect of phase matching 10.2.4 Ultrafast four-wave mixing 10.3 Phase-matching techniques 10.3.1 Physical mechanisms 10.3.2 Nearly phase-matched four-wave mixing 10.3.3 Phase matching near the zero-dispersion wavelength 10.3.4 Phase matching through self-phase modulation 10.3.5 Phase matching in birefringent fibers 10.4 Parametric amplification 10.4.1 Review of early work 10.4.2 Gain spectrum and its bandwidth 10.4.3 Single-pump configuration 10.4.4 Dual-pump configuration 10.4.5 Effects of pump depletion 10.5 Polarization effects 10.5.1 Vector theory of four-wave mixing 10.5.2 Polarization dependence of parametric gain 10.5.3 Linearly and circularly polarized pumps 10.5.4 Effect of residual fiber birefringence 10.6 Applications of four-wave mixing 10.6.1 Parametric amplifiers and wavelength converters 10.6.2 Tunable fiber-optic parametric oscillators 10.6.3 Ultrafast signal processing 10.6.4 Quantum correlation and noise squeezing 10.6.5 Phase-sensitive amplification Problems References 11 Highly nonlinear fibers 11.1 Nonlinear parameter 11.1.1 Units and values of n2 11.1.2 SPM-based techniques 11.1.3 XPM-based technique 11.1.4 FWM-based technique 11.1.5 Variations in n2 values 11.2 Fibers with silica cladding 11.3 Tapered fibers with air cladding 11.4 Microstructured fibers 11.4.1 Design and fabrication 11.4.2 Modal and dispersive properties 11.4.3 Hollow-core photonic crystal fibers 11.4.4 Bragg fibers 11.5 Non-silica fibers 11.5.1 Lead-silicate fibers 11.5.2 Chalcogenide fibers 11.5.3 Bismuth-oxide fibers 11.6 Theory of narrow-core fibers Problems References 12 Novel nonlinear phenomena 12.1 Soliton fission and dispersive waves 12.1.1 Fission of second- and higher-order solitons 12.1.2 Generation of dispersive waves 12.2 Intrapulse Raman scattering 12.2.1 Enhanced RIFS through soliton fission 12.2.2 Cross-correlation technique 12.2.3 Wavelength tuning through RIFS 12.2.4 Effects of birefringence 12.2.5 Suppression of Raman-induced frequency shifts 12.2.6 Soliton dynamics near a zero-dispersion wavelength 12.2.7 Multipeak Raman solitons 12.3 Frequency combs and cavity solitons 12.3.1 CW-pumped ring cavities 12.3.2 Nonlinear dynamics of ring cavities 12.3.3 Frequency combs without a cavity 12.4 Second-harmonic generation 12.4.1 Physical mechanisms 12.4.2 Thermal poling and quasi-phase matching 12.4.3 SHG theory 12.5 Third-harmonic generation 12.5.1 THG in highly nonlinear fibers 12.5.2 Effects of group-velocity mismatch 12.5.3 Effects of fiber birefringence Problems References 13 Supercontinuum generation 13.1 Pumping with picosecond pulses 13.1.1 Nonlinear mechanisms 13.1.2 Experimental progress after 2000 13.2 Pumping with femtosecond pulses 13.3 Temporal and spectral evolution of pulses 13.3.1 Numerical modeling of supercontinuum 13.3.2 Role of cross-phase modulation 13.3.3 XPM-induced trapping 13.3.4 Role of four-wave mixing 13.4 CW or quasi-CW pumping 13.4.1 Nonlinear mechanisms 13.4.2 Experimental results 13.5 Polarization effects 13.6 Coherence properties 13.6.1 Effect of pump coherence 13.6.2 Spectral incoherent solitons 13.6.3 Techniques for improving spectral coherence 13.7 Ultraviolet and mid-infrared supercontinua 13.7.1 Extension into ultraviolet region 13.7.2 Extension into mid-infrared region 13.8 Optical rogue waves 13.8.1 L-shaped statistics of pulse-to-pulse fluctuations 13.8.2 Techniques for controlling rogue-wave statistics 13.8.3 Modulation instability revisited Problems References 14 Multimode fibers 14.1 Modes of optical fibers 14.1.1 Step-index fibers 14.1.2 Graded-index fibers 14.1.3 Multicore fibers 14.1.4 Excitation of fiber modes 14.2 Nonlinear pulse propagation 14.2.1 Multimode propagation equations 14.2.2 Few-mode fibers 14.2.3 Random linear mode coupling 14.2.4 Graded-index fibers 14.3 Modulation instability and solitons 14.3.1 Modulation instability 14.3.2 Multimode solitons 14.3.3 Solitons in specific fiber modes 14.4 Intermodal nonlinear phenomena 14.4.1 Intermodal FWM 14.4.2 Intermodal SRS 14.4.3 Intermodal SBS 14.5 Spatio-temporal dynamics 14.5.1 Spatial beam cleanup 14.5.2 Supercontinuum generation 14.6 Multicore fibers Problems References A System of units B Nonlinear response of fibers References C Derivation of the generalized NLS equation D Numerical code for the NLS equation E List of acronyms Index