دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 5
نویسندگان: Agrawal. Govind (Auth.)
سری:
ISBN (شابک) : 9780123970237
ناشر: Academic Press
سال نشر: 2013
تعداد صفحات: 631
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Nonlinear Fiber Optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیبر نوری غیر خطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از زمانی که 4e ظاهر شد، تکامل سریع این میدان رخ داده است. 5e از این کار کلاسیک گزارشی به روز از پدیده های غیرخطی رخ داده در فیبرهای نوری را ارائه می دهد، که اساس تمام زیرساخت های مخابراتی ما و همچنین استفاده در زمینه پزشکی است.
با انعکاس پیشرفتهای بزرگ در تحقیقات، این نسخه جدید شامل محتوای جدید عمدهای است: جلوههای نور آهسته، که کاهش نویز و مصرف انرژی و پراکندگی بریلوین تحریکشده توسط ترافیک شبکه را ارائه میدهد. درمان برداری از الیاف بسیار غیر خطی. و فصلی کاملاً جدید در تولید ابرپیوسته در فیبرهای نوری.
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field.
Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter on supercontinuum generation in optical fibers.
front_matter copyright dedications author_biography preface 1. Introduction 1.1 HISTORICAL PERSPECTIVE 1.2 FIBER CHARACTERISICS 1.2.1 Material and fabrication 1.2.2 Fiber losses 1.2.3 Chromatic Dispersion 1.2.4 Polarization-Mode Dispersion 1.3 FIBER NONLINEARITIES 1.3.1 Nonlinear Refraction 1.3.2 Stimulated Inelastic Scattering 1.3.3 Importance of Nonlinear Effects 1.4 OVERVIEW PROBLEMS REFERENCES 2. Pulse Propagation in Fibers 2.1 MAXWELL’S EQUATIONS 2.2 FIBER MODES 2.2.1 Eigenvalue Equation 2.2.2 Single-Mode Condition 2.2.3 Characteristics of the Fundamental Mode 2.3 PULSE-PROPAGATION EQUATION 2.3.1 Nonlinear Pulse Propagation 2.3.2 Higher-Order Nonlinear Effects 2.3.3 Raman Response Function and its Impact 2.3.4 Extension to Multimode Fibers 2.4 NUMERICAL METHODS 2.4.1 Split-Step Fourier Method 2.4.2 Finite-Difference Methods PROBLEMS REFERENCES 3. Group-Velocity Dispersion 3.1 DIFFERENT PROPAGATION REGIMES 3.2 DISPERSION-INDUCED PULSE BROADENING 3.2.1 Gaussian Pulses 3.2.2 Chirped Gaussian Pulses 3.2.3 Hyperbolic-Secant Pulses 3.2.4 Super-Gaussian Pulses 3.2.5 Experimental Results 3.3 THIRD-ORDER DISPERSION 3.3.1 Evolution of Chirped Gaussian Pulses 3.3.2 Broadening Factor 3.3.3 Arbitrary-Shape Pulses 3.3.4 Ultrashort-Pulse Measurements 3.4 DISPERSION MANAGEMENT 3.4.1 GVD-Induced Limitations 3.4.2 Dispersion Compensation 3.4.3 Compensation of Third-Order Dispersion PROBLEMS REFERENCES 4. Self-Phase Modulation 4.1 SPM-INDUCED SPECTRAL CHANGES 4.1.1 Nonlinear Phase Shift 4.1.2 Changes in Pulse Spectra 4.1.3 Effect of Pulse Shape and Initial Chirp 4.1.4 Effect of Partial Coherence 4.2 EFFECT OF GROUP-VELOCITY DISPERSION 4.2.1 Pulse Evolution 4.2.2 Broadening Factor 4.2.3 Optical Wave Breaking 4.2.4 Experimental Results 4.2.5 Effect of Third-Order Dispersion 4.2.6 SPM Effects in Fiber Amplifiers 4.3 SEMIANALYTIC TECHNIQUES 4.3.1 Moment Method 4.3.2 Variational Method 4.4 HIGHER-ORDER NONLINEAR EFFECTS 4.3.3 Specific Analytic Solutions 4.4.1 Self-Steepening 4.4.2 Effect of GVD on Optical Shocks 4.4.3 Intrapulse Raman Scattering REFERENCES PROBLEMS 5. Optical Solitons 5.1 MODULATION INSTABILITY 5.1.1 Linear Stability Analysis 5.1.2 Gain Spectrum 5.1.3 Experimental Results 5.1.4 Ultrashort Pulse Generation 5.1.5 Impact on Lightwave Systems 5.2 FIBER SOLITONS 5.2.1 Inverse Scattering Method 5.2.2 Fundamental Soliton 5.2.3 Second and Higher-Order Solitons 5.2.4 Experimental Confirmation 5.2.5 Soliton Stability 5.3 OTHER TYPES OF SOLITONS 5.3.1 Dark Solitons 5.3.2 Bistable Solitons 5.3.3 Dispersion-Managed Solitons 5.3.4 Optical Similaritons 5.4 PERTURBATION OF SOLITONS 5.4.1 Perturbation Methods 5.4.2 Fiber Losses 5.4.3 Soliton Amplification 5.4.4 Soliton Interaction 5.5 HIGHER-ORDER EFFECTS 5.5.1 Moment Equations for Pulse Parameters 5.5.2 Third-Order Dispersion 5.5.3 Self-Steepening 5.5.4 Intrapulse Raman Scattering 5.5.5 Propagation of Femtosecond Pulses REFERENCES PROBLEMS 6. Polarization Effects 6.1 NONLINEAR BIREFRINGENCE 6.1.1 Origin of Nonlinear Birefringence 6.1.2 Coupled-Mode Equations 6.1.3 Elliptically Birefringent Fibers 6.2 NONLINEAR PHASE SHIFT 6.2.1 Nondispersive XPM 6.2.2 Optical Kerr Effect 6.2.3 Pulse Shaping 6.3 EVOLUTION OF POLARIZATION STATE 6.3.1 Analytic Solution 6.3.2 Poincaré-Sphere Representation 6.3.3 Polarization Instability 6.3.4 Polarization Chaos 6.4 VECTOR MODULATION INSTABILITY 6.4.1 Low-Birefringence Fibers 6.4.2 High-Birefringence Fibers 6.4.3 Isotropic Fibers 6.4.4 Experimental Results 6.5 BIREFRINGENCE AND SOLITONS 6.5.1 Low-Birefringence Fibers 6.5.2 High-Birefringence Fibers 6.5.3 Soliton-Dragging Logic Gates 6.5.4 Vector Solitons 6.6 RANDOM BIREFRINGENCE 6.6.1 Polarization-Mode Dispersion 6.6.2 Vector Form of the NLS Equation 6.6.3 Effects of PMD on Solitons PROBLEMS REFERENCES 7. Cross-Phase Modulation 7.1 XPM-INDUCED NONLINEAR COUPLING 7.1.1 Nonlinear Refractive Index 7.1.2 Coupled NLS Equations 7.2 XPM-INDUCED MODULATION INSTABILITY 7.2.1 Linear Stability Analysis 7.2.2 Experimental Results 7.3 XPM-PAIRED SOLITONS 7.3.1 Bright–Dark Soliton Pair 7.3.2 Bright–Gray Soliton Pair 7.3.3 Periodic Solutions 7.3.4 Multiple Coupled NLS Equations 7.4 SPECTRAL AND TEMPORAL EFFECTS 7.4.1 Asymmetric Spectral Broadening 7.4.2 Asymmetric Temporal Changes 7.4.3 Higher-Order Nonlinear Effects 7.5 APPLICATIONS OF XPM 7.5.1 XPM-Induced Pulse Compression 7.5.2 XPM-Induced Optical Switching 7.5.3 XPM-Induced Nonreciprocity 7.6 POLARIZATION EFFECTS 7.6.1 Vector Theory of XPM 7.6.2 Polarization Evolution 7.6.3 Polarization-Dependent Spectral Broadening 7.6.4 Pulse Trapping and Compression 7.6.5 XPM-Induced Wave Breaking 7.7 XPM EFFECTS IN BIREFRINGENT FIBERS 7.7.1 Fibers with Low Birefringence 7.7.2 Fibers with High Birefringence PROBLEMS REFERENCES 8. Stimulated Raman Scattering 8.1 BASIC CONCEPTS 8.1.1 Raman-Gain Spectrum 8.1.2 Raman Threshold 8.1.3 Coupled Amplitude Equations 8.1.4 Effect of Four-Wave Mixing 8.2 QUASI-CONTINUOUS SRS 8.2.1 Single-Pass Raman Generation 8.2.2 Raman Fiber Lasers 8.2.3 Raman Fiber Amplifiers 8.2.4 Raman-Induced Crosstalk 8.3 SRS WITH SHORT PUMP PULSES 8.3.1 Pulse-Propagation Equations 8.3.2 Nondispersive Case 8.3.3 Effects of GVD 8.3.4 Raman-Induced Index Changes 8.3.5 Experimental Results 8.3.6 Synchronously Pumped Raman Lasers 8.3.7 Short-Pulse Raman Amplification 8.4 SOLITON EFFECTS 8.4.1 Raman Solitons 8.4.2 Raman Soliton Lasers 8.4.3 Soliton-Effect Pulse Compression 8.5 POLARIZATION EFFECTS 8.5.1 Vector Theory of Raman Amplification 8.5.2 PMD Effects on Raman Amplification PROBLEMS REFERENCES 9. Stimulated Brillouin Scattering 9.1 BASIC CONCEPTS 9.1.1 Physical Process 9.1.2 Brillouin-Gain Spectrum 9.2 QUASI-CW SBS 9.2.1 Brillouin Threshold 9.2.2 Polarization Effects 9.2.3 Techniques for Controlling the SBS Threshold 9.2.4 Experimental Results 9.3 BRILLOUIN-FIBER AMPLIFIERS 9.3.1 Gain Saturation 9.3.2 Amplifier Design and Applications 9.4 SBS DYNAMICS 9.4.1 Coupled Amplitude Equations 9.4.2 SBS with Q-Switched Pulses 9.4.3 SBS-Induced Index Changes 9.4.4 Relaxation Oscillations 9.4.5 Modulation Instability and Chaos 9.5 BRILLOUIN-FIBER LASERS 9.5.1 CW Operation 9.5.2 Pulsed Operation PROBLEMS REFERENCES 10. Four-Wave Mixing 10.1 ORIGIN OF FOUR-WAVE MIXING 10.2 THEORY OF FOUR-WAVE MIXING 10.2.1 Coupled Amplitude Equations 10.2.2 Approximate Solution 10.2.3 Effect of Phase Matching 10.2.4 Ultrafast Four-Wave Mixing 10.3 PHASE-MATCHING TECHNIQUES 10.3.1 Physical Mechanisms 10.3.2 Phase Matching in Multimode Fibers 10.3.3 Phase Matching in Single-Mode Fibers 10.3.3.1 Nearly Phase-Matched Four-Wave Mixing 10.3.3.2 Phase Matching Near the Zero-Dispersion Wavelength 10.3.3.3 Phase Matching Due to Self-Phase Modulation 10.3.4 Phase Matching in Birefringent Fibers 10.4 PARAMETRIC AMPLIFICATION 10.4.1 Review of Early Work 10.4.2 Gain Spectrum and Its Bandwidth 10.4.3 Single-Pump Configuration 10.4.4 Dual-Pump Configuration 10.4.5 Effects of Pump Depletion 10.5 POLARIZATION EFFECTS 10.5.1 Vector Theory of Four-Wave Mixing 10.5.2 Polarization Dependence of Parametric Gain 10.5.3 Linearly and Circularly Polarized Pumps 10.5.4 Effect of Residual Fiber Birefringence 10.6 APPLICATIONS OF FOUR-WAVE MIXING 10.6.1 Parametric Oscillators 10.6.2 Ultrafast Signal Processing 10.6.3 Quantum Correlation and Noise Squeezing 10.6.4 Phase-Sensitive Amplification PROBLEMS REFERENCES 11. Highly Nonlinear Fibers 11.1 NONLINEAR PARAMETER 11.1.1 Units and Values of n2 11.1.2 SPM-Based Techniques 11.1.3 XPM-Based Technique 11.1.4 FWM-Based Technique 11.1.5 Variations in n2 Values 11.2 FIBERS WITH SILICA CLADDING 11.3 TAPERED FIBERS WITH AIR CLADDING 11.4 MICROSTRUCTURED FIBERS 11.4.1 Design and Fabrication 11.4.2 Modal and Dispersive Properties 11.4.3 Hollow-Core Photonic Crystal Fibers 11.4.4 Bragg Fibers 11.5 NON-SILICA FIBERS 11.5.1 Lead-Silicate Fibers 11.5.2 Chalcogenide Fibers 11.5.3 Bismuth-Oxide Fibers 11.6 PULSE PROPAGATION IN NARROW-CORE FIBERS 11.6.1 Vectorial Theory 11.6.2 Frequency-Dependent Mode Profiles PROBLEMS REFERENCES 12. Novel Nonlinear Phenomena 12.1 SOLITON FISSION AND DISPERSIVE WAVES 12.1.1 Fission of Second- and Higher-Order Solitons 12.1.2 Generation of Dispersive Waves 12.2 INTRAPULSE RAMAN SCATTERING 12.2.1 Enhanced RIFS Through Soliton Fission 12.2.2 Cross-correlation Technique 12.2.3 Wavelength Tuning through RIFS 12.2.4 Effects of Birefringence 12.2.5 Suppression of Raman-Induced Frequency Shifts 12.2.6 Soliton Dynamics Near a Zero-Dispersion Wavelength 12.2.7 Multipeak Raman Solitons 12.3 FOUR-WAVE MIXING 12.3.1 Role of Fourth-Order Dispersion 12.3.2 Role of Fiber Birefringence 12.3.3 Parametric Amplifiers and Wavelength Converters 12.3.4 Tunable Fiber-Optic Parametric Oscillators 12.4 SECOND-HARMONIC GENERATION 12.4.1 Physical Mechanisms 12.4.2 Thermal Poling and Quasi-Phase Matching 12.4.3 SHG Theory 12.5 THIRD-HARMONIC GENERATION 12.5.1 THG in Highly Nonlinear Fibers 12.5.2 Effects of Group-Velocity Mismatch 12.5.3 Effects of Fiber Birefringence PROBLEMS REFERENCES 13. Supercontinuum Generation 13.1 PUMPING WITH PICOSECOND PULSES 13.1.1 Nonlinear Mechanisms 13.1.2 Experimental Progress After 2000 13.2 PUMPING WITH FEMTOSECOND PULSES 13.2.1 Microstructured Silica Fibers 13.2.2 Microstructured Nonsilica Fibers 13.3 TEMPORAL AND SPECTRAL EVOLUTIONS 13.3.1 Numerical Modeling of Supercontinuum 13.3.2 Role of Cross-Phase Modulation 13.3.3 XPM-Induced Trapping 13.3.4 Role of Four-Wave Mixing 13.4 CW OR QUASI-CW PUMPING 13.4.1 Nonlinear Mechanisms 13.4.2 Experimental Progress 13.5 POLARIZATION EFFECTS 13.5.1 Birefringent Microstructured Fibers 13.5.2 Nearly Isotropic Fibers 13.5.3 Nonlinear Polarization Rotation in Isotropic Fibers 13.6 COHERENCE PROPERTIES 13.6.1 Spectral-Domain Degree of Coherence 13.6.2 Techniques for Improving Coherence 13.6.3 Spectral Incoherent Solitons 13.7 OPTICAL ROGUE WAVES 13.7.1 L-Shaped Statistics of Pulse-to-Pulse Fluctuations 13.7.2 Techniques for Controlling Rogue-Wave Statistics 13.7.3 Modulation Instability Revisited PROBLEMS REFERENCES A. System of Units B. Numerical Code for theNLS Equation C. List of Acronyms Index A B C D E F G H I J K L M N P Q R S T U V W X Z