ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nonconventional and vernacular construction materials: characterisation, properties and applications

دانلود کتاب مصالح ساختمانی غیر متعارف و بومی: خصوصیات ، خصوصیات و کاربردها

Nonconventional and vernacular construction materials: characterisation, properties and applications

مشخصات کتاب

Nonconventional and vernacular construction materials: characterisation, properties and applications

ویرایش: Second edition 
نویسندگان: ,   
سری: Woodhead Publishing series in civil and structural engineering 
ISBN (شابک) : 9780081027042, 0081027044 
ناشر: Woodhead Publishing 
سال نشر: 2020 
تعداد صفحات: 695 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 مگابایت 

قیمت کتاب (تومان) : 46,000



کلمات کلیدی مربوط به کتاب مصالح ساختمانی غیر متعارف و بومی: خصوصیات ، خصوصیات و کاربردها: مصالح ساختمانی، معماری بومی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nonconventional and vernacular construction materials: characterisation, properties and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مصالح ساختمانی غیر متعارف و بومی: خصوصیات ، خصوصیات و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover......Page 1
Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications......Page 2
Copyright......Page 3
Contributors......Page 4
Preface......Page 6
1.1 Bam......Page 9
1.2 Vernacular......Page 13
1.2.1 “Vernacular” defined......Page 14
1.4 The “vernacular” of industrial architecture......Page 16
1.5 Srinagar, Kashmir, India......Page 19
1.6 The great 1906 San Francisco earthquake and fire......Page 26
1.7 Skeleton-frame construction......Page 30
1.8 Frames and solid walls......Page 35
1.9 Conclusion: the “ecology” of the vernacular......Page 36
References......Page 42
16 - Nonconventional timber construction......Page 45
2.2 Natural materials in historic construction......Page 47
2.3 Reinforced adobes as energy-saving construction materials......Page 53
22.2.1 Raw bamboo selection......Page 624
2.3.2 Improvement of physical and mechanical properties (fabrication stage)......Page 55
2.3.3 Effective use of adobes in building construction (building construction stage)......Page 56
6.4 Future directions: a proposed “bamboo mining” model for the application of materials informatics to non-conventional materials......Page 57
2.4.3 Bamboo as a functionally graded composite material......Page 58
2.4.4 Mapping of physical and mechanical properties of full-culm bamboo......Page 60
2.4.4.1 Dimensions of the bamboo culm......Page 62
2.4.4.2 Data for the selection of bamboo for engineering projects......Page 64
2.5 Application of natural and alternative materials in modern bridge construction......Page 65
2.6 Concluding remarks......Page 66
References......Page 67
6 - The potential for materials informatics in the development of non-conventional materials......Page 70
3.2.1 Life cycle approach......Page 73
8.3.1.1 Moisture......Page 75
Disassembly......Page 76
Supply chains......Page 77
Resilience......Page 78
Cultural significance......Page 79
Localization of resources, materials, and processes......Page 80
Industrialization and quality control......Page 81
19.3 Design considerations......Page 82
3.3.2 Intersectional innovation......Page 84
References......Page 85
21.1 Introduction......Page 88
4.2 Material standard versus standard material......Page 90
4.3 The ‘cart and horse’......Page 92
4.4 Consensus standards development......Page 94
4.5 “Shall”, “should” and “may” – the language of standards......Page 97
4.6.1 Allowable stress approach to design......Page 98
22.7 Analysis of carbon footprints......Page 99
18.1.5 Bamboo reinforced concrete......Page 179
4.8 Appropriate codes and standards for nonconventional and vernacular materials......Page 100
4.9 Challenges and opportunities of codes and standards development for nonconventional and vernacular materials......Page 102
4.10 Conclusions, observations and needs for the future......Page 104
References......Page 105
18 - Bamboo material characterisation......Page 108
5.2 Justice and sustainability contexts of NOCMAT......Page 110
5.3.1 Brief introduction to appropriate technology......Page 113
5.3.2 Vernacular experience and local innovation......Page 114
5.3.3 Other frameworks compatible with appropriate technology......Page 117
5.4.1 Integrating NOCMAT in mechanics of materials......Page 118
5.4.2 Incorporating design and active learning......Page 119
5.4.3 Transcending systemic methodological constraints......Page 120
5.4.4 Engaging values and social context......Page 121
5.5 Toward vernacular experience in engineering education......Page 125
5.6.1 University of Pittsburgh......Page 127
5.6.2 University of Puerto Rico, Mayagüez......Page 128
5.7 Concluding remarks......Page 131
Acknowledgments......Page 132
References......Page 465
6.1 Introduction......Page 137
21.2.1 General manufacturing process......Page 597
6.3 Application of imaging for materials informatics to non-conventional materials......Page 141
References......Page 145
23 - Paperboard tubes in structural and construction engineering......Page 353
7.1.1 Availability and potential of vegetable fibers......Page 147
7.1.2 Vegetable fibers as reinforcement for brittle matrices......Page 148
7.2.1 Macrofibers......Page 151
7.2.2 Pulp fibers......Page 153
7.2.3 Organosolv pulp production and properties......Page 155
7.2.4 Nanofibrillated cellulose......Page 156
7.2.6 Properties of nanofibrillated cellulose......Page 158
7.3.1 Composites reinforced with bamboo cellulose fiber......Page 160
7.3.2 Pulp reinforced cement-based composites......Page 161
7.3.3 Engineered composites with hybrid reinforcement......Page 162
7.3.4 Durability......Page 164
7.4 Final remarks and perspective for future research needs......Page 165
References......Page 166
10.1 Introduction......Page 174
8.2 Description of biocomposites......Page 175
11.2.2 Chemical properties......Page 253
8.2.2 Natural fibers......Page 176
17.5.3 Case study III: Brock Commons Tall Wood Building......Page 178
8.3 Durability concerns......Page 180
21.3.2 Connections......Page 204
8.3.2 Ultraviolet (UV) radiation......Page 184
16.3.1 Understanding the nature of wood as a natural composite......Page 443
8.3.4 Fire......Page 185
21.4 Thermal, durability, long term behavior, and fire performance......Page 187
8.5 Conclusions and future research......Page 188
References......Page 189
10 - Natural plant-based aggregates and bio-composite panels with low thermal conductivity and high hygrothermal efficiency for .........Page 221
9.1 Introduction......Page 193
9.2.1 Plant growth......Page 196
9.2.3 Hygrothermal properties......Page 197
9.2.4 Durability......Page 199
9.2.5 Materials used with straw bales......Page 202
9.3.1 Physical and mechanical properties......Page 203
9.3.3 Hygrothermal properties and risk of decay......Page 205
9.3.5 Life-cycle assessment of straw bale construction......Page 207
9.4 Applications......Page 209
22.6.1 Glubam pedestrian bridges......Page 633
9.4.2 Design of straw bale buildings......Page 210
12.3.2 Soil preparation......Page 212
9.4.3.2 Non-load-bearing applications......Page 214
9.4.4 Prefabricated panel construction......Page 215
9.5 Future of straw bale construction......Page 217
References......Page 218
10.2.1 Morphology of hemp......Page 226
10.2.2 Morphology of flax......Page 227
10.2.3 Morphology of rape......Page 229
10.3.1 Measurement of porosity of natural fiber aggregates......Page 230
10.3.2 Bulk density of natural fiber aggregates......Page 231
10.3.3 Moisture buffer values for natural fiber aggregates......Page 232
10.3.4 Thermal conductivity......Page 233
16.4 Modern engineering applications......Page 235
10.4.3 Thermal conductivity of ISOBIO composite panel......Page 237
10.5 Performance of ISOBIO panels in test cells......Page 239
17.6 Design considerations and principles......Page 483
16.7 Conclusions......Page 463
References......Page 247
11 - Utilization of industrial by-products and natural ashes in mortar and concrete development of sustainable construction mate .........Page 250
11.1 Introduction......Page 251
20.2 Characteristics of bamboo as building material......Page 560
11.2.3.1 Setting time......Page 254
11.2.3.2 Hydration properties......Page 256
11.2.3.3 Strength properties......Page 257
11.2.3.4 Durability properties......Page 260
11.3 Silica fume......Page 262
11.3.3.1 Water demand and workability......Page 263
11.3.3.2 Setting time......Page 264
11.3.3.4 Strength properties......Page 265
11.4 Waste foundry sand......Page 266
11.4.1 Physical properties......Page 271
11.4.2 Chemical properties......Page 272
11.4.3 Applications of WFS......Page 273
11.4.4.1 Strength properties......Page 274
11.5 Rice husk ash......Page 275
11.5.3.1 Strength properties......Page 276
11.5.3.2 Durability properties......Page 281
11.6 Palm oil fuel ash......Page 282
11.6.3.1 Strength properties......Page 283
11.6.3.2 Durability properties......Page 286
11.7.1 Introduction......Page 288
11.7.2 Utilization of industrial by-products......Page 289
11.7.3.1 Workability......Page 291
11.7.3.2 Strength properties......Page 292
11.7.3.4 Summary......Page 294
11.7.4 Conclusions......Page 295
References......Page 296
22 - Engineered bamboo in China......Page 307
12.1.1 Economic and environmental issues......Page 308
16.1.3 Timber – natural rounds......Page 311
12.2 Materials selection and block production......Page 312
14.3.1 Hygrothermal performance......Page 313
12.2.3 Soil identification and selection......Page 314
12.2.4 Stabilization of soil for CSEB production......Page 317
12.2.5.2 Lime......Page 320
12.2.6.1 Compressive strength......Page 321
12.2.6.2 Moisture volumetric strain......Page 322
12.2.6.4 Dimensional tolerance of CSEBs......Page 323
12.3 Block production......Page 325
21.4.4 Fire performance......Page 326
12.3.3 Batch quantities for CSEB production......Page 327
12.3.4 Mixing of materials......Page 328
12.3.5 Manual and mechanized production......Page 329
19.8.2 Dowel connection capacity......Page 551
12.4.1 Key features of interlocking units......Page 333
12.4.2 Construction using CSEBs......Page 334
12.4.3 Dry-stacking of masonry......Page 336
12.5 Strength evaluation of block units and masonry walls......Page 338
12.5.2.1 Methods of compression strength evaluation......Page 339
12.5.2.2 Capping arrangement......Page 340
12.5.3 Factors affecting the strength in compression of CSEBs......Page 341
12.5.3.2 Effect of cement content......Page 342
12.5.4.1 Compression tests on dry-stack masonry wall (in-plane loading)......Page 343
12.5.4.2 Behavior of conventional masonry wall under lateral load......Page 344
12.5.4.3 Behavior of dry-stack masonry wall under lateral load......Page 345
12.6.1 Durability of stabilized soil blocks......Page 346
12.6.3 Water absorption by capillarity rise (sorptivity)......Page 347
12.7 Conclusions......Page 349
References......Page 350
13.2 Structure and properties of clay soils......Page 355
13.4 Clay materials without additives......Page 358
13.5 Industrial additives......Page 359
13.5.1 Ground granulated blastfurnace slag......Page 360
13.5.3 Wastepaper sludge ash......Page 363
13.6 Agricultural additives......Page 365
13.7.1 Formation......Page 366
13.7.3 Construction......Page 367
13.7.4 Durability of unfired clay materials......Page 369
13.8 Future trends......Page 370
References......Page 372
14.1 Earth as a building material......Page 376
14.2.1 Affinity with water......Page 379
14.2.2 Hygrothermal behavior......Page 384
14.2.3 Mechanical behavior......Page 386
14.2.4 Impact on the building design......Page 390
14.2.5 Earth stabilization: the challenges and limitations......Page 392
22.3 Material properties of engineered bamboo......Page 393
14.3.2 Mechanical stability and durability......Page 395
14.4 Concluding remarks on earthen building sustainability......Page 397
References......Page 398
15.2 Overview of ancient applications......Page 404
15.3.1.2 Intrusive rocks......Page 406
15.3.1.3 Volcanic rocks......Page 407
15.3.1.4 Sedimentary rocks......Page 408
15.3.1.4.1 Rocks of biochemical origin......Page 409
15.3.1.4.2 Rocks of chemical origin......Page 410
15.3.2 Petrographic characteristics and use of rocks as building materials......Page 411
15.3.3 Mortars......Page 413
15.4 Masonry constructions......Page 416
15.4.1 The box behavior......Page 417
15.4.2 The masonry wall......Page 418
15.4.3.1 Dry stone walls......Page 419
15.4.3.2 Rubble masonry......Page 420
15.4.3.3 Ashlar masonry......Page 422
15.4.3.4 Masonry with wood reinforcing......Page 423
15.5.1 Assessment of the safety......Page 424
17.5.8 Case study VIII: River Beech......Page 427
15.7 Role of masonry in sustainable construction......Page 430
References......Page 665
16.1.4 Timber – sawn members......Page 437
16.1.5 Timber – processed elements and products......Page 438
16.2.1 Simple structures......Page 439
16.2.2 Bridges......Page 440
16.2.3 Buildings......Page 442
16.3.2 Structural properties......Page 444
16.3.3 Wood and timber......Page 445
16.3.4 Effects of moisture......Page 446
16.3.5 Time-dependent behavior......Page 447
16.3.6 Durability......Page 448
16.4.1 Grading......Page 451
16.4.2.1 Sheet products......Page 452
16.4.2.2 Beam products......Page 453
16.4.2.3 Massive timber products......Page 455
16.5 Significant case studies......Page 456
16.6 Codes and standards......Page 461
21 - Engineered bamboo for structural applications......Page 466
17.2 What is tall timber?......Page 467
17.3 The argument for tall timber......Page 469
17.4 Materials and manufacturing for tall timber......Page 472
17.5 Tall timber case studies......Page 475
17.5.2 Case study II: Treet......Page 476
17.5.4 Case study IV: Mjøstårnet......Page 479
17.5.5 Case study V: FFTT 30......Page 480
17.5.7 Case study VII: Oakwood Tower......Page 481
17.7 The future of tall timber......Page 485
Acknowledgments......Page 487
References......Page 488
18.1 Introduction......Page 490
18.1.1 Bamboo as a plant......Page 491
18.1.2.1 Effect of density on mechanical properties......Page 493
18.1.2.3 Effect of age on other properties......Page 494
18.1.2.4 Effect of moisture content......Page 497
18.1.2.5 Dimensional properties of the culm......Page 498
18.1.2.6 Functionally graded material......Page 499
18.1.3 Tests for material and physical property determination......Page 500
18.1.3.1 Characterisation for grading operations......Page 505
18.1.3.2 Development of test standards......Page 506
18.1.3.3 Case study: G. angustifolia......Page 507
18.1.4 Derivation of design values......Page 508
18.1.6 Further work and future developments......Page 513
18.1.7 Concluding remarks......Page 515
References......Page 516
20 - Joints in bamboo construction......Page 559
19.1.1 Bamboo species......Page 521
19.1.2 Bamboo-based products......Page 522
19.1.3 Types of structures......Page 523
19.2.1 Anatomy of bamboo culms......Page 527
19.2.2 Physical and mechanical properties......Page 528
19.2.3 Bamboo preservation......Page 529
19.2.4 Fire resistance......Page 531
19.3.1 Bamboo testing standards......Page 532
19.3.2.1 Structural design basis......Page 533
19.3.2.2 Structural design method......Page 534
19.4 Bending members......Page 535
19.4.1 Deflections......Page 536
19.4.2 Flexure......Page 539
19.4.4 Bearing......Page 540
19.5.1 Compression elements......Page 541
19.5.2 Tension elements......Page 543
19.7 Shear walls......Page 544
19.8.1 Types of connections......Page 547
19.9 Fabrication and construction......Page 554
19.10 Concluding remarks and future research......Page 555
References......Page 556
20.3 Classification of bamboo culm construction......Page 562
20.3.1 Traditional or vernacular bamboo construction......Page 564
20.3.2 Engineered conventional bamboo construction......Page 566
20.3.3 Substitutive bamboo constructions......Page 567
20.4 Classification of bamboo joints......Page 568
20.4.1 Group 1: transferring compression through contact with the whole section......Page 570
20.4.2 Group 2: transferring force through friction on the inner surface or compression to the diaphragm......Page 571
22.5.1 Lightweight glubam-frame buildings......Page 630
20.4.4 Group 4: transferring force through a perpendicular element......Page 574
20.4.6 Group 6: transferring radial compression to the center of the culm......Page 576
20.4.7 Combinations of connections......Page 577
20.4.7.1 Space structure connections – Groups 1 and 2......Page 578
20.4.7.2 Column base connections – Groups 1, 3 and 4B......Page 580
20.4.7.4 Mortar-filled gusset joints – Groups 1, 2 and 4......Page 581
20.4.7.5 Splices connections – Groups 3 and 4B and Groups 2 and 3......Page 582
20.5 Development of bamboo joints for tension......Page 583
20.5.1 Development of joints using the hollow nature of bamboo......Page 584
20.5.2 Development of joints with perpendicular elements......Page 586
20.5.3 Development of modern lashed joints......Page 587
20.5.3.1 Pretensioned lashed connections......Page 588
20.5.3.2 Demonstration of pretensioned lashed connections......Page 590
20.6 Conclusions......Page 591
References......Page 592
21.2.2 Bamboo scrimber......Page 598
21.2.3 Laminated bamboo......Page 599
21.2.5.1 Bio-based adhesives......Page 600
21.3 Material and mechanical properties......Page 601
21.3.1.1 Tension......Page 603
21.3.1.4 Bending......Page 605
21.3.3 Structural components......Page 606
21.4.2 Durability......Page 607
21.4.3 Creep and fatigue behavior......Page 608
22.5 Applications: buildings......Page 609
21.6.2 Case study: bamboo house, Moso Bamboo Modern Technological Park, Anji, China......Page 611
21.6.3 Case study: curtain wall, Klöckner Pentaplast, Montabaur, Germany......Page 612
21.7 Design and standardization......Page 613
21.8 Future pathways......Page 615
21.9 Conclusions......Page 616
References......Page 617
22.1 Introduction......Page 622
22.2.2 Bamboo strips......Page 625
22.2.5 Post-processing......Page 626
22.4.1 Columns......Page 627
22.4.2 Beams and girders......Page 629
22.5.2 Glubam temporary shelters for disaster relief......Page 632
22.6.2 Truck load roadway bridge......Page 635
22.8 Future research needs......Page 637
References......Page 638
23.1 Introduction......Page 641
23.2 Paper tube manufacturing and primary uses......Page 644
23.3 Mechanics and properties of paperboard and tube materials......Page 647
23.4 Structural systems......Page 652
23.5.1 Columns......Page 653
23.5.2 Beams......Page 656
23.5.3 Arches, trusses, and frames......Page 658
23.6 Structural analysis and design......Page 661
23.6.1 Member design......Page 663
23.7 Conclusion......Page 664
A......Page 669
B......Page 670
C......Page 673
D......Page 676
E......Page 677
G......Page 679
H......Page 680
I......Page 681
L......Page 682
M......Page 683
N......Page 685
O......Page 686
P......Page 687
R......Page 688
S......Page 689
T......Page 692
V......Page 693
Z......Page 694
Back Cover......Page 695




نظرات کاربران