دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Helmi Youssef. Hassan El-Hofy
سری:
ISBN (شابک) : 0367431343, 9780367431341
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 491
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Non-Traditional and Advanced Machining Technologies: Machine Tools and Operations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری های ماشینکاری غیر سنتی و پیشرفته: ابزار و ماشین آلات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژیهای ماشینکاری غیر سنتی و پیشرفته، فناوریها، ماشینابزار، و عملیات فرآیندهای ماشینکاری غیرسنتی و فناوریهای ماشینکاری کمکی را پوشش میدهد. دو فصل جداگانه به تکنیکهای ماشینکاری مواد برش سخت مانند ضد زنگ، آلیاژهای فوقالعاده، سرامیکها و کامپوزیتها میپردازد. طراحی برای ماشینکاری، دقت و یکپارچگی سطح قطعات ماشینکاری شده، ماشین ابزار و عملیات سازگار با محیط زیست و هگزاپودها نیز ارائه شده است.
موضوعات پوشش داده شده در سراسر منعکس کننده پیشرفت های سریع و قابل توجهی است که در زمینه های مختلف در فن آوری های ماشینکاری رخ داده است و به گونه ای سازماندهی و توصیف شده است تا علاقه خواننده را جلب کند. هدف این درمانها برانگیختن و به چالش کشیدن خواننده برای کشف راهحلهای مناسب برای سؤالات مختلف در مورد طراحی محصول و انتخاب بهینه عملیات ماشینکاری برای یک کار معین است.
این کتاب برای متخصصان، دانشجویان، مفید خواهد بود. و شرکت هایی در زمینه های صنعتی، تولیدی، مکانیکی، مواد و مهندسی تولید.
Non-Traditional and Advanced Machining Technologies covers the technologies, machine tools, and operations of non-traditional machining processes and assisted machining technologies. Two separate chapters deal with the machining techniques of difficult-to-cut materials, such as stainless, super alloys, ceramics, and composites. Design for machining, accuracy and surface integrity of machined parts, environment-friendly machine tools and operations, and hexapods are also presented.
The topics covered throughout reflect the rapid and significant advances that have occurred in various areas in machining technologies and are organized and described in such a manner to draw the interest of the reader. The treatments are aimed at motiving and challenging the reader to explore viable solutions to a variety of questions regarding product design and optimum selection of machining operations for a given task.
The book will be useful to professionals, students, and companies in the areas of industrial, manufacturing, mechanical, materials, and production engineering fields.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgements Author Biographies List of Symbols List of Acronyms Unit I Non-Traditional Machining Operations and Non-Traditional Machine Tools Chapter 1 Non-Traditional Machining Processes 1.1 Introduction 1.2 Classification of Non-Traditional Machining Processes 1.3 Review Questions References Chapter 2 Mechanical Non-Traditional Machining Operations and Machine Tools 2.1 Jet Machines and Operations 2.1.1 Abrasive Jet Machining 2.1.1.1 Process Characteristics and Applications 2.1.1.2 Work Station of Abrasive Jet Machining 2.1.1.3 Process Capabilities 2.1.2 Water Jet Machining (Hydrodynamic Machining) 2.1.2.1 Process Characteristics and Applications 2.1.2.2 Equipment of WJM 2.1.2.3 Process Capabilities 2.1.3 Abrasive Water Jet Machining 2.1.3.1 Process Characteristics and Applications 2.1.3.2 AWJM Equipment 2.1.3.3 Process Capabilities 2.2 Ultrasonic Machining 2.2.1 Definition, Characteristics, and Applications 2.2.2 USM Equipment 2.2.3 Design of Acoustic Horns Magnification Factor Rm 2.2.4 Process Capabilities 2.2.5 Recent Developments 2.3 Abrasive Flow Machining 2.3.1 Principles 2.3.2 Process Parameters of Abrasive Flow Machining 2.3.3 Applications of AFM 2.4 Review Questions and Problems References Chapter 3 Chemical and Electrochemical Non-Traditional Machining Operations and Machine Tools 3.1 Chemical Machining 3.1.1 Chemical Milling Tooling for CH Milling Advantages and Disadvantages of CH Milling 3.1.2 Photochemical Machining (Spray Etching) Applications of PCM Process Advantages and Disadvantages of PCM 3.2 Electrochemical Machines and Operations 3.2.1 Process Characteristics and Applications Advantages of ECM Disadvantages of ECM Applications of ECM 3.2.2 Elements of ECM 3.2.3 ECM Equipment (EC Sinking Machine) 3.2.4 Process Capabilities 3.2.5 ECM Allied Processes 3.2.5.1 Shaped Tube Electrolytic Machining 3.2.5.2 Electrostream (Capillary) Drilling 3.2.5.3 Electrochemical Jet Drilling 3.2.5.4 Electrochemical Deburring 3.2.5.5 Electrochemical Polishing 3.2.5.6 Electrochemical Sharpening 3.2.5.7 Electrochemical Grinding 3.2.5.8 Electrochemical Honing 3.3 Review Questions and Problems References Chapter 4 Thermo-Electrical Non-Traditional Machining Operations and Machine Tools 4.1 Electrical Discharge Machines and Operations 4.1.1 Process Characteristics and Applications Applications 4.1.2 Sinking Machine 4.1.3 EDM-Spark Circuits (Power Supply Circuits) 4.1.3.1 Resistance-Capacitance RC Circuit 4.1.3.2 Transistorized Pulse Generator Circuits 4.1.4 EDM Tool Electrodes 4.1.5 Process Capabilities 4.1.6 EDM Allied Processes 4.1.6.1 Electrical Discharge Milling (ED Milling) 4.1.6.2 Electrical Discharge Wire Cutting 4.2 Electron Beam Machining Equipment and Operations 4.2.1 Process Characteristics and Applications 4.2.2 Electron Beam Machining Equipment 4.2.3 Process Capabilities 4.3 Laser Beam Machining Equipment and Operations 4.3.1 Process Characteristics Process Advantages and Limitations 4.3.2 Types of Lasers 4.3.2.1 Pyrolithic and Photolithic Lasers 4.3.2.2 Industrial Lasers 4.3.3 Laser Beam Machining Operations 4.3.4 LBM Equipment 4.3.5 Applications and Capabilities 4.4 Plasma Arc Cutting Systems and Operations 4.4.1 Process Characteristics 4.4.2 Plasma Arc Cutting Systems 4.4.3 Applications and Capabilities of PAC 4.5 Review Questions and Problems References Unit II Advanced Machining Technology Chapter 5 Machining of DTC Materials (Stainless Steels and Super Alloys) by Traditional and Non-Traditional Methods 5.1 Introduction 5.2 Traditional Machining of Stainless Steels 5.2.1 Types, Characteristics, and Applications of SSs 5.2.2 Machinability and Machinability Ratings of SSs 5.2.2.1 Free-Machining Additives of Stainless Steels 5.2.2.2 Machinability of Free- and Non-Free-Machining Stainless Steels 5.2.2.3 Enhanced Machining Stainless Steels 5.2.2.4 Machinability Ratings of Stainless Steels 5.2.3 Machining and Machining Conditions of SSs 5.3 Traditional Machining of Super Alloys 5.3.1 Types, Characteristics, and Applications of SAs 5.3.2 Machinability and Machinability Rating of Super Alloys 5.3.2.1 Machinability Aspects of Super Alloys 5.3.2.2 Machinability Rating of Super Alloys 5.3.3 Machining and Machining Conditions of Super Alloys 5.4 Non-Traditional Machining of Stainless Steels and Super Alloys 5.4.1 Machining of Stainless Steels and Super Alloys by Mechanical Techniques 5.4.2 Machining SSs and SAs by Electrochemical and Chemical Techniques 5.4.3 Thermoelectric Machining of Stainless Steels and Super Alloys 5.5 Review Questions References Chapter 6 Machining of DTC Materials (Ceramics and Composites) by Traditional and Non-Traditional Methods 6.1 Introduction 6.2 Machining of Ceramic Materials 6.2.1 Ceramic as a Promising Engineering Material 6.2.2 Types, Characteristics, Classification, and Applications of Ceramics 6.2.2.1 Types, Characteristics, and Classification 6.2.2.2 Fields of Applications 6.2.3 Fabrication Techniques of Crystalline Ceramics 6.2.3.1 Processing Techniques and Shaping of Green Bodies 6.2.3.2 Green Machining Processes of Green and Pre-Sintered Ceramics 6.2.3.3 Hard Machining Processes of Sintered Ceramics 6.3 Machining of Composite Materials 6.3.1 Types, Characteristics, and Applications of Composites 6.3.2 Traditional Machining and Machinability of Composites 6.3.3 Non-Traditional Machining and Machinability of Composites 6.4 Review Questions References Chapter 7 Assisted Machining Technologies 7.1 Introduction 7.2 Thermal-Assisted Machining 7.2.1 Laser-Assisted Machining 7.2.2 Plasma-Assisted Machining 7.3 Vibration-Assisted Machining (VAM) 7.3.1 Principles and Aims of VAM 7.3.2 Vibration-Assisted Traditional Machining Processes 7.3.2.1 Vibration-Assisted Turning 7.3.2.2 Vibration-Assisted Drilling 7.3.2.3 Vibration-Assisted Milling 7.3.2.4 Vibration-Assisted Grinding 7.3.3 Vibration-Assisted Non-Traditional Machining Processes 7.3.3.1 Vibration-Assisted Electrochemical Machining (VAECM) 7.3.3.2 Vibration-Assisted Electrodischarge Machining 7.3.3.3 Vibration-Assisted Laser Beam Machining 7.3.3.4 Vibration-Assisted Abrasive Water Jet Machining 7.4 Magnetic Field-Assisted Processes 7.4.1 Magnetic Abrasive Finishing (MAF) 7.4.1.1 Finishing of Outer Cylindrical Surfaces and Typical Machining Conditions of MAF 7.4.1.2 MAF Finishing of Inner Cylindrical Surfaces 7.4.1.3 Semi-Magnetic Abrasive Finishing (SMAF) 7.4.1.4 Other MAF Applications 7.4.2 Magnetic Float Polishing (MFP) or Magnetic Fluid Grinding (MFG) 7.4.3 Advantages of MFAP 7.4.4 Magnetorheological Finishing (MRF) 7.4.5 Magnetorheological Abrasive Flow Finishing (MRAFF) 7.5 Review Questions References Chapter 8 Design for Machining 8.1 Introduction 8.1.1 General Design Rules 8.2 General Design Recommendations 8.3 Design for Machining by Cutting 8.3.1 Turning 8.3.1.1 Economic Production Quantities 8.3.1.2 Design Recommendations for Turning 8.3.1.3 Dimensional Control 8.3.2 Drilling and Allied Operations 8.3.2.1 Economic Production Quantities 8.3.2.2 Design Recommendations for Drilling and Allied Operations 8.3.2.3 Dimensional Control 8.3.3 Milling 8.3.3.1 Design Recommendations 8.3.3.2 Dimensional Factors and Tolerances 8.3.4 Shaping, Planing, and Slotting 8.3.4.1 Design Recommendations 8.3.4.2 Dimensional Control 8.3.5 Broaching 8.3.5.1 Design Recommendations 8.3.5.2 Dimensional Factors 8.3.5.3 Recommended Tolerances 8.3.6 Thread Cutting 8.3.6.1 Design Recommendations 8.3.6.2 Dimensional Factors and Tolerances 8.3.7 Gear Cutting 8.3.7.1 Design Recommendations 8.3.7.2 Dimensional Factors 8.4 Design for Grinding 8.4.1 Surface Grinding 8.4.1.1 Design Recommendations 8.4.1.2 Dimensional Control 8.4.2 Cylindrical Grinding 8.4.2.1 Design Recommendations 8.4.2.2 Dimensional Factors 8.4.3 Centerless Grinding 8.4.3.1 Design Recommendations 8.4.3.2 Dimensional Control 8.5 Design for Abrasive Finishing Processes 8.5.1 Honing 8.5.2 Lapping 8.5.3 Superfinishing 8.6 Design for Chemical and Electrochemical Machining 8.6.1 Chemical Machining 8.6.1.1 Design Recommendations 8.6.1.2 Dimensional Factors and Tolerances 8.6.2 Electrochemical Machining 8.6.2.1 Design Recommendations 8.6.2.2 Dimensional Factors 8.6.3 Electrochemical Grinding 8.6.3.1 Design Recommendations 8.6.3.2 Dimensional Factors 8.7 Design for Thermal Machining 8.7.1 Electrodischarge Machining 8.7.1.1 Design Recommendations 8.7.1.2 Dimensional Factors 8.7.2 Electron Beam Machining 8.7.3 Laser Beam Machining 8.8 Design for Ultrasonic Machining 8.9 Design for Abrasive Jet Machining 8.10 Review Questions References Chapter 9 Accuracy and Surface Integrity Realized by Machining Processes 9.1 Introduction 9.2 Surface Texture 9.3 Surface Quality and Functional Properties 9.4 Surface Integrity 9.5 Surface Effects by Traditional Machining 9.5.1 Chip Removal Processes 9.5.2 Grinding 9.6 Surface Effects by Non-Traditional Machining 9.6.1 Electrochemical and Chemical Machining 9.6.2 Thermal Non-Traditional Processes 9.6.2.1 Electrodischarge Machining 9.6.2.2 Laser Beam Machining 9.6.2.3 Electron Beam Machining 9.6.2.4 Plasma Beam Machining (PBM) 9.6.2.5 Electroerosion Dissolution Machining 9.6.2.6 Electrochemical Discharge Grinding 9.6.3 Mechanical Non-Traditional Processes 9.7 Reducing Distortion and Surface Effects in Machining 9.8 Review Questions References Chapter 10 Environment-Friendly Machine Tools and Operations 10.1 Introduction 10.2 Traditional Machining 10.2.1 Cutting Fluids 10.2.1.1 Classification of Cutting Fluids 10.2.1.2 Selection of Cutting Fluids 10.2.1.3 Evaluation of Cutting Fluids 10.2.2 Hazard Ranking of Cutting Fluids 10.2.3 Health Hazards of Cutting Fluids 10.2.4 Cryogenic Cooling 10.2.5 Ecological Machining 10.2.6 Factors Affecting the Use of MQL 10.2.7 Applications of Ecological Machining 10.3 Non-Traditional Machining Processes 10.3.1 Chemical Machining 10.3.2 Electrochemical Machining 10.3.3 Electrodischarge Machining 10.3.3.1 Protective Measures 10.3.4 Laser Beam Machining 10.3.5 Ultrasonic Machining 10.3.5.1 Electromagnetic Field 10.3.5.2 Ultrasonic Waves 10.3.5.3 Abrasives Slurry 10.3.5.4 Contact Hazards 10.3.5.5 Other Hazards 10.3.6 Abrasive Jet Machining 10.4 Review Questions References Chapter 11 Hexapods and Machining Technology 11.1 Introduction 11.2 Historical Background 11.3 Hexapod Mechanism and Design Features 11.3.1 Hexapod Mechanism 11.3.2 Design Features 11.3.2.1 Hexapods of Telescopic Struts (Ingersoll System) 11.3.2.2 Hexapods of Ball Screw Struts (Hexel and Geodetic System) 11.4 Hexapod Constructional Elements 11.4.1 Strut Assembly 11.4.2 Sphere Drive 11.4.3 Bifurcated Balls 11.4.4 Spindles 11.4.5 Articulated Head 11.4.6 Upper Platform 11.4.7 Control System 11.5 Hexapod Characteristics 11.6 Manufacturing Applications 11.7 Review Questions References Index