دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Siegfried Bosch, Ulrich Güntzer, Reinhold Remmert سری: Grundlehren der mathematischen Wissenschaften 261 ISBN (شابک) : 3642522319, 9783540125464 ناشر: Springer سال نشر: 1984 تعداد صفحات: 452 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل غیر Archimedean: یک رویکرد سیستماتیک به هندسه تحلیلی سفت و سخت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بررسی در: http://projecteuclid.org/download/pdf_1/euclid.bams/1183553480 در کتاب BGR (= Bosch-Guntzer-Remmert) یک رویکرد سیستماتیک به نظریه تیت در 415 صفحه ارائه شده است. این کتاب در اواخر دهه شصت برنامهریزی شد و پیشنویسهای بخش بزرگی از آن تا سال 1970 وجود داشت. این کتاب شامل یک بخش طولانی در مورد تئوری ارزشگذاری و تحلیل خطی خطی است که باید به شدت کوتاه میشد. بخشهای هندسه آفینوئید بسیار درخشان هستند، مشروط بر اینکه بتوان از سبک بورباکی در ارائه ریاضیات قدردانی کرد. کلمه "آفینوئید" که به نظر می رسد اکنون معنای آن بسیار شناخته شده است، توسط R. Remmert در حدود سال 1965 پیشنهاد شد. از آن برای نشان دادن اینکه فضاهای آفینوئیدی، که حداکثر طیف جبرهای توپولوژیکی از نوع محدود بر روی K هستند استفاده میشود، هیبریدهایی هستند که دارای ویژگیهای جبری وابسته و همچنین جبری هستند. نمونه اولیه چنین فضایی پلی دیسک واحد بسته است {x = (x_l, ... , x_n) ∈ K^n: |x_i|
Review at : http://projecteuclid.org/download/pdf_1/euclid.bams/1183553480 In the book of BGR (= Bosch-Guntzer-Remmert) a systematic approach to Tate's theory is provided in 415 pages. The book was planned in the late sixties and drafts of a large part of it existed by 1970. It consists of a long part on valuation theory and linear ultrametric analysis that should have been drastically shortened. The parts on affinoid geometry are quite brilliant provided one can appreciate the Bourbaki-type style of presenting mathematics. The word 'affinoid', whose meaning seems to be now very widely known, was suggested by R. Remmert around 1965; it is used to indicate that the affinoid spaces, which are the maximal spectra of topological algebras of finite type over K, are hybrids carrying affine algebraic as well as algebroid features. The prototype of such a space is the closed unit polydisc {x = (x_l, ... , x_n) ∈ K^n: |x_i|
Introduction Part A. Linear Ultrametric Analysis and Valuation Theory Chapter 1. Norms and Valuations 1.1. Semi-normed and normed groups 1.1.1. Ultrametric functions 1.1.2. Filtrations 1.1.3. Semi-normed and normed groups. Ultrametric topology 1.1.4. Distance 1.1.5. Strictly closed subgroups 1.1.6. Quotient groups 1.1.7. Completions 1.1.8. Convergent series 1.1.9. Strict homomorphisms and completions 1.2. Semi-normed and normed rings 1.2.1. Semi-normed and normed rings 1.2.2. Power-multiplicative and multiplicative elements 1.2.3. The category ill and the functor A --> A~ 1.2.4. Topologically nilpotent elements and complete normed rings 1.2.5. Power-bounded elements 1.3. Power-multiplicative semi-norms 1.3.1. Definition and elementary properties 1.3.2. Smoothing procedures for semi-norms 1.3.3. Standard examples of norms and semi-norms 1.4. Strictly convergent power series 1.4.1. Definition and structure of A(X) 1.4.2. Structure of A(X) 1.4.3. Bounded homomorphisms of A(X) 1.5. Non-Archimedean valuations 1.5.1. Valued rings 1.5.2. Examples 1.5.3. The Gauss-Lemma 1.5.4. Spectral value of monic polynomials 1.5.5. Formal power series in countably many indeterminates 1.6. Discrete valuation rings 1.6.1. Definition. Elementary properties 1.6.2. The example of F. K. Schmidt 1.7. Bald and discrete B-rings 1.7.1. B-rings 1.7.2. Bald rings 1.8. Quasi-Noetherian B-rings 1.8.1. Definition and characterization 1.8.2. Construction of quasi-Noetherian rings Chapter 2. Normed modules and normed vector spaces 2.1. Normed and faithfully normed modules 2.1.1. Definition 2.1.2. Submodules and quotient modules 2.1.3. Modules of fractions. Completions 2.1.4. Ramification index 2.1.5. Direct sum. Bounded and restricted direct product 2.1.6. The module ℒ(L, M) of bounded A-linear maps 2.1.7. Complete tensor products 2.1.8. Continuity and boundedness 2.1.9. Density condition 2.1.10. The functor M --> M~. Residue degree 2.2. Examples of normed and faithfully normed A-modules 2.2.1. The module A^n 2.2.2. The modules A^(l), A^(INFINITY), c(A) and b(A) 2.2.3. Structure of ℒ(c_i(A), M) 2.2.4. The ring A [[Y_1, Y 2, ... ]] of formal power series 2.2.5. b-separable modules 2.2.6. The functor M --> T(M) 2.3. Weakly cartesian spaces 2.3.1. Elementary properties of normed spaces 2.3.2. Weakly cartesian spaces 2.3.3. Properties of weakly cartesian spaces 2.3.4. Weakly cartesian spaces and tame modules 2.4. Cartesian spaces 2.4.1. Cartesian spaces of finite dimension 2.4.2. Finite-dimensional cartesian spaces and strictly closed subspaces 2.4.3. Cartesian spaces of arbitrary dimension 2.4.4. Normed vector spaces over a spherically complete field 2.5. Strictly cartesian spaces 2.5.1. Finite-dimensional strictly cartesian spaces 2.5.2. Strictly cartesian spaces of arbitrary dimension 2.6. Weakly cartesian spaces of countable dimension 2.6.1. Weakly cartesian bases 2.6.2. Existence of weakly cartesian bases. Fundamental theorem 2.7. Normed vector spaces of countable type. The Lifting Theorem 2.7.1. Spaces of countable type 2.7.2. Schauder bases. Orthogonality and orthonormality 2.7.3. The Lifting Theorem 2.7.4. Proof of the Lifting Theorem 2.7.5. Applications 2.8. Banach spaces 2.8.1. Definition. Fundamental theorem 2.8.2. Banach spaces of countable type Chapter 3. Extensions of norms and valuations 3.1. Normed and faithfully normed algebras 3.1.1. A-algebra norms 3.1.2. Spectral values and power-multiplicative norms 3.1.3. Residue degree and ramification index 3.1.4. Dedekind\'s Lemma and a Finiteness Lemma 3.1.5. Power-multiplicative and faithful A-algebra norms 3.2. Algebraic field extensions. Spectral norm and valuations 3.2.1. Spectral norm on algebraic field extensions 3.2.2. Spectral norm on reduced integral K-algebras 3.2.3. Spectral norm and field polynomials 3.2.4. Spectral norm and valuations 3.3. Classical valuation theory 3.3.1. Spectral norm and completions 3.3.2. Construction of inequivalent valuations 3.3.3. Construction of power-multiplicative algebra norms 3.3.4. Hensel\'s Lemma 3.4. Properties of the spectral valuation 3.4.1. Continuity of roots 3.4.2. Krasner\'s Lemma 3.4.3. Example. p-adic numbers 3.5. Weakly stable fields 3.5.1. Weakly cartesian fields 3.5.2. Weakly stable fields 3.5.3. Criterion for weak stability 3.5.4. Weak stability and Japaneseness 3.6. Stable fields 3.6.1. Definition 3.6.2. Criteria for stability 3.7. Banach algebras 3.7.1. Definition and examples 3.7.2. Finiteness and completeness of modules over a Banach algebra 3.7.3. The category M_A 3.7.4. Finite homomorphisms 3.7.5. Continuity of homomorphisms 3.8. Function algebras 3.8.1. The supremum semi-norm on k-algebras 3.8.2. The supremum semi-norm on k-Banach algebras 3.8.3. Banach function algebras Chapter 4 (Appendix to Part A). Tame modules and Japanese rings 4.1. Tame modules 4.2. A Theorem of Dedekind 4.3. Japanese rings. First criterion for Japaneseness 4.4. Tameness and Japaneseness Part B. Affinoid algebras Chapter 5 Strictly convergent power series 5.1. Definition and elementary properties of T_n and T*_n 5.1.1. Description of T_n 5.1.2. The Gauss norm is a valuation and T*_n is a polynomial ring over k 5.1.3. Going up and down between Tn and T*_n 5.1.4. T_n as a function algebra 5.2. Weierstrass-Ruckert theory for T_n 5.2.1. Weierstrass Division Theorem 5.2.2. Weierstrass Preparation Theorem 5.2.3. Weierstrass polynomials and Weierstrass Finiteness Theorem 5.2.4. Generation of distinguished power series 5.2.5. Ruckert\'s theory 5.2.6. Applications of Ruckert\'s theory for T_n 5.2. 7. Finite T_n-modules 5.3. Stability of Q(T_n) 5.3.1. Weak stability 5.3.2. The Stability Theorem. Reductions 5.3.3. Stability of k(X) if |k*| is divisible 5.3.4. Completion of the proof for arbitrary |k*| Chapter 6. Affinoid algebras and Finiteness Theorems 6.1. Elementary properties of affinoid algebras 6.1.1. The category U of k-affinoid algebras 6.1.2. Noether normalization 6.1.3. Continuity of homomorphisms 6.1.4. Examples. Generalized rings of fractions 6.1.5. Further examples. Convergent power series on general polydiscs 6.2. The spectrum of a k-affinoid algebra and the supremum semi-norm 6.2.1. The supremum semi-norm 6.2.2. Integral homomorphisms 6.2.3. Power-bounded and topologically nilpotent elements 6.2.4. Reduced k-affinoid algebras are Banach function algebras 6.3. The reduction functor A --> A* 6.3.1. Monomorphisms, isometries and epimorphisms 6.3.2. Finiteness of homomorphisms 6.3.3. Applications to group operations 6.3.4. Finiteness of the reduction functor A --> A* 6.3.5. Summary 6.4. The functor A --> A* 6.4.1. Finiteness Theorems 6.4.2. Epimorphisms and isomorphisms 6.4.3. Residue norm and supremum norm. Distinguished k-affinoid algebras and epimorphisms Part C. Rigid analytic geometry Chapter 7. Local theory of affinoid varieties 7.1. Affinoid varieties 7.1.1. Max T_n and the unit ball B^n(k_a) 7.1.2. Affinoid sets. Hilbert\'s Nullstellensatz 7.1.3. Closed subspaces of Max T_n 7.1.4. Affinoid maps. The category of affinoid varieties 7.1.5. The reduction functor 7.2. Affinoid subdomains 7.2.1. The canonical topology on Sp A 7.2.2. The universal property defining affinoid subdomains 7.2.3. Examples of open affinoid subdomains 7.2.4. Transitivity properties 7.2.5. The Openness Theorem 7.2.6. Affinoid subdomains and reduction 7.3. Immersions of affinoid varieties 7.3.1. Ideal-adic topologies 7.3.2. Germs of affinoid functions 7.3.3. Locally closed immersions 7.3.4. Runge immersions 7.3.5. Main theorem for locally closed immersions Chapter 8. Cech cohomology of affinoid varieties 8.1. Cech cohomology with values in a presheaf 8.1.1. Cohomology of complexes 8.1.2. Cohomology of double complexes 8.1.3. Cech cohomology 8.1.4. A Comparison Theorem for Cech cohomology 8.2. Tate\'s Acyclicity Theorem 8.2.1. Statement of the theorem 8.2.2. Affinoid coverings 8.2.3. Proof of the Acyclicity Theorem for Laurent coverings Chapter 9. Rigid analytic varieties 9.1. Grothendieck topologies 9.1.1. G-topological spaces 9.1.2. Enhancing procedures for G-topologies 9.1.3. Pasting of G-topological spaces 9.1.4. G-topologies on affinoid varieties 9.2. Sheaf theory 9.2.1. Presheaves and sheaves on G-topological spaces 9.2.2. Sheafification of presheaves 9.2.3. Extension of sheaves 9.3. Analytic varieties. Definitions and constructions 9.3.1. Locally G-ringed spaces and analytic varieties 9.3.2. Pasting of analytic varieties 9.3.3. Pasting of analytic maps 9.3.4. Some basic examples 9.3.5. Fibre products 9.3.6. Extension of the ground field 9.4. Coherent modules 9.4.1. O-modules 9.4.2. Associated modules 9.4.3. U-coherent modules 9.4.4. Finite morphisms 9.5. Closed analytic subvarieties 9.5.1. Coherent ideals. The nilradical 9.5.2. Analytic subsets 9.5.3. Closed immersions of analytic varieties 9.6. Separated and proper morphisms 9.6.1. Separated morphisms 9.6.2. Proper morphisms 9.6.3. The Direct Image Theorem and the Theorem on Formal Functions 9.7. An application to elliptic curves 9.7.1. Families of annuli 9.7.2. Affinoid subdomains of the unit disc 9.7.3. Tate\'s elliptic curves Bibliography Glossary of Notations Index