دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Colin H. Hansen, Kristy L. Hansen سری: ISBN (شابک) : 1138369020, 9781138369023 ناشر: Routledge & CRC Press سال نشر: 2021 تعداد صفحات: 482 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Noise Control: From Concept to Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل نویز: از مفهوم تا کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش دوم کنترل نویز: از مفهوم تا کاربرد، به تازگی گسترش یافته و به طور کامل به روز شده است، اکنون شامل 180 مشکل درجه بندی شده با راه حل ها، به اضافه 100 پایان فصل است. مشکلات با راه حل های موجود برای مربیان در وب سایت نویسندگان. نویسندگان با استفاده از اصول اولیه علمی، نشان میدهند که چگونه میتوان درک از صدا را در تنظیمات دنیای واقعی به کار برد، نمونههای متعددی را با جزئیات کار کرده و تمرینهای خوب در کنترل نویز را برای امکانات جدید و موجود پوشش میدهد.
این موضوعات ضروری برای کنترل نویز صنعتی را پوشش می دهد: آکوستیک، معیارهای نویز، خطر آسیب شنوایی، اقدامات ارزیابی نویز، ابزار اندازه گیری، انواع منبع صدا از جمله محاسبه و اندازه گیری توان خروجی آنها، انتشار صدا در فضای باز، صدا در اتاق ها، مواد جاذب صدا، انتقال صدا از طریق پارتیشن ها و محفظه ها، موانع نویز، کاهش نویز صدا خفه کن واکنشی و اتلافی و ملاحظات طراحی صدا خفه کن مانند افت فشار و تولید خود نویز.
توضیحات دقیق مفاهیم مهم باعث می شود. این کتاب درسی برای دانشجویان مهندسی و علوم و همچنین متخصصان بدون پیشینه در آکوستیک قابل درک است.
وب سایت نویسندگان: www.causalsystems.com
کالین اچ. هانسن، استاد ممتاز مهندسی مکانیک در دانشگاه آدلاید، استرالیا، و رئیس سابق موسسه بین المللی آکوستیک و ارتعاش است.
کریستی ال. هانسن، یک مدرس ارشد مهندسی مکانیک در دانشگاه فلیندرز استرالیا، و دارنده جایزه پژوهشگر شغلی اولیه کشف شورای تحقیقات استرالیا.
The second edition of Noise Control: From Concept to Application, newly expanded and thoroughly updated, now includes 180 graded problems with solutions, plus 100 end-of-chapter problems with solutions available for instructors on the authors’ website. Working from basic scientific principles, the authors show how an understanding of sound can be applied to real-world settings, working through numerous examples in detail and covering good practice in noise control for both new and existing facilities.
It covers the essential topics for industrial noise control: acoustics, noise criteria, hearing-damage risk, noise-assessment measures, measurement instrumentation, sound-source types including the calculation and measurement of their output power, sound propagation outdoors, sound in rooms, sound-absorbing materials, sound transmission through partitions and enclosures, noise barriers, reactive and dissipative muffler-noise reduction and muffler-design considerations such as pressure loss and self-noise generation.
Detailed explanations of important concepts make this textbook easy to understand by engineering and science undergraduates, as well as professionals with no background in acoustics.
Authors’ website: www.causalsystems.com
Colin H. Hansen is Emeritus Professor in Mechanical Engineering at the University of Adelaide, Australia, and past President of the International Institute of Acoustics and Vibration.
Kristy L. Hansen is a Senior Lecturer in Mechanical Engineering at Flinders University, Australia, and holder of the Australian Research Council’s Discovery Early Career Researcher Award.
Cover Half Title Title Page Copyright Page Dedication Contents Preface 1. Fundamentals 1.1. Introduction 1.2. Noise-Control Strategies 1.2.1. Sound Source Modification 1.2.2. Control of the Transmission Path 1.2.3. Modification of the Receiver 1.2.4. Existing Facilities 1.2.5. Facilities in the Design Stage 1.3. Acoustical Standards and Software 1.4. Acoustic Field Variables 1.4.1. Variables 1.4.2. Magnitudes 1.4.3. The Speed of Sound 1.4.4. Acoustic Potential Function and the Wave Equation 1.4.5. Complex Number Formulations 1.5. Plane, Cylindrical and Spherical Waves 1.5.1. Plane Wave Propagation 1.5.2. Cylindrical Wave Propagation 1.5.3. Spherical Wave Propagation 1.5.4. Wave Summation 1.5.5. Plane Standing Waves 1.6. Mean Square Quantities and Amplitudes 1.7. Energy Density 1.8. Sound Intensity 1.9. Sound Power 1.10. Decibels 1.11. Spectra 1.11.1. Frequency Analysis 1.12. Combining Sound Pressures 1.12.1. Coherent Sounds 1.12.2. Incoherent Sounds 1.12.3. Subtraction of Sound Pressure Levels 1.12.4. Combining Level Reductions 1.13. Impedance 1.13.1. Mechanical Impedance, Z m 1.13.2. Specific Acoustic Impedance, Z s 1.13.3. Acoustic Impedance, Z A 1.14. Additional Problems 2. Loudness, Descriptors of Noise, Noise Criteria and Instrumentation 2.1. Introduction 2.2. Loudness 2.2.1. Comparative Loudness and the Phon 2.2.2. Low-Frequency Loudness 2.2.3. Relative Loudness and the Sone 2.2.4. Weighting Networks 2.3. Descriptors of Noise 2.3.1. Equivalent Continuous Sound Pressure Level, Leq 2.3.2. A-Weighted Equivalent Continuous Sound Pressure Level, L Aeq 2.3.3. Noise Exposure Level, L EX,8h or L ex or L ep'd 2.3.4. A-Weighted Sound Exposure, E A, T 2.3.5. A-Weighted Sound Exposure Level, L AE or SEL 2.3.6. Day-Night Average Sound Level, L dn or DNL 2.3.7. Community Noise Equivalent Level, L den or CNEL 2.3.8. Statistical Descriptors 2.3.9. Other Descriptors, L max, L peak, L Imp 2.4. Hearing Loss 2.5. Hearing Damage Risk 2.5.1. Requirements for Speech Recognition 2.5.2. Quantifying Hearing Damage Risk 2.5.3. United States Standard Formulation 2.5.4. Occupational Noise Exposure Assessment 2.5.5. Impulse and Impact Noise 2.6. Implementing a Hearing Conservation Programme 2.7. Speech Interference Criteria 2.8. Psychological Effects of Noise 2.8.1. Noise as a Cause of Stress 2.8.2. Effect on Behaviour and Work Efficiency 2.9. Ambient Sound Pressure Level Specification 2.9.1. Noise Weighting Curves 2.9.1.1. NR Curves 2.9.1.2. NC Curves 2.9.1.3. NCB Curves 2.9.1.4. RC, Mark II Curves 2.9.2. Comparison of Noise Weighting Curves with dBA Specifications 2.9.3. Speech Privacy 2.10. Environmental Noise Criteria 2.10.1. A-Weighting Criteria 2.11. Environmental Noise Surveys 2.11.1. Measurement Locations 2.11.2. Duration of the Measurement Survey 2.11.3. Measurement Parameters 2.11.4. Measurement Uncertainty 2.11.5. Noise Impact 2.12. Measuring Instrumentation 2.12.1. Microphones 2.12.1.1. Microphone Sensitivity 2.12.2. Sound Level Meters 2.12.2.1. Calibration 2.12.2.2. Measurement Accuracy 2.12.3. Statistical Analysers 2.12.4. Personal Exposure Meter 2.12.5. Data Acquisition and Recording 2.12.6. Spectrum Analysers 2.12.7. Sound Intensity Meters 2.12.8. Acoustic Cameras 2.13. Additional Problems 3. Sound Sources and Sound Power Measurement 3.1. Introduction 3.2. Simple Source 3.3. Dipole Source 3.4. Quadrupole Source 3.4.1. Lateral Quadrupole 3.4.2. Longitudinal Quadrupole 3.5. Line Source 3.5.1. Infinite Line Source 3.5.2. Finite Line Source 3.6. Piston in an Infinite Baffle 3.7. Incoherent Plane Radiator 3.7.1. Single Wall 3.7.2. Several Walls of a Building or Enclosure 3.8. Radiation Field of a Sound Source 3.9. Directivity 3.10. Reflection Effects 3.10.1. Simple Source Near a Reflecting Surface 3.10.2. Observer Near a Reflecting Surface 3.10.3. Observer and Source Both Close to a Reflecting Surface 3.11. Determination of Sound Power 3.11.1. Measurement in Free or Semi-Free Field 3.11.2. Measurement in a Diffuse Field 3.11.2.1. Substitution Method 3.11.2.2. Absolute Method 3.11.3. Field Measurement 3.11.3.1. Semi-Reverberant Field Measurements Using a Reference Source to Determine Room Absorption 3.11.3.2. Semi-Reverberant Field Measurements Using a Reference Source Substitution 3.11.3.3. Semi-Reverberant Field Measurements Using Two Test Surfaces 3.11.3.4. Near-Field Measurements 3.11.4. Uncertainty in Sound Power Measurements 3.12. Additional Problems 4. Sound Propagation Outdoors 4.1. Introduction 4.2. Methodology 4.3. Geometric Divergence, Adiv 4.4. Atmospheric Absorption, Aatm 4.5. Ground Effects, Agr 4.5.1. Excess Attenuation Using Simply Hard or Soft Ground 4.5.2. Excess Attenuation Using the Plane Wave Method 4.6. Meteorological Effects, Amet 4.6.1. Attenuation in the Shadow Zone (Negative Sonic Gradient) 4.7. CONCAWE Propagation Model 4.7.1. Geometrical Divergence, K 1 4.7.2. Atmospheric Absorption, K 2 4.7.3. Ground Effects, K 3 4.7.4. Meteorological Effects, K 4 4.7.5. Source Height Effects, K 5 4.7.6. Barrier Attenuation, K 6 4.7.7. In-Plant Screening, K 7 4.7.8. Vegetation Screening, K v 4.7.9. Limitations of the CONCAWE Model 4.8. ISO 9613-2 (1996) Noise Propagation Model 4.8.1. Ground Effects, Agr 4.8.2. Meteorological Effects, Amet 4.8.3. Source Height Effects 4.8.4. Barrier Attenuation, Abar 4.8.5. In-Plant Screening, Asite 4.8.6. Housing Screening, Ahous 4.8.7. Vegetation Screening, Afol 4.8.8. Effect of Reflections Other Than Ground Reflections 4.8.9. Limitations of the ISO9613-2 Model 4.9. Propagation Model Prediction Uncertainty 4.9.1. Type A Standard Uncertainty 4.9.2. Type B Standard Uncertainty 4.9.3. Combining Standard Uncertainties 4.9.4. Expanded Uncertainty 4.10. Additional Problems 5. Sound Absorbing Materials 5.1. Introduction 5.2. Flow Resistance and Resistivity 5.3. Sound Propagation in Porous Media 5.4. Measurement of Absorption Coefficients of Porous Materials 5.4.1. Measurement Using the Moving Microphone Method 5.4.2. Measurement Using the Two-Microphone Method 5.5. Calculation of Statistical Absorption Coefficients of Some Porous Material Configurations 5.5.1. Porous Liner with a Backing Cavity 5.5.2. Porous Liner Covered with a Limp Impervious Layer 5.5.3. Porous Liner Covered with a Perforated Sheet 5.5.4. Porous Liner with a Limp Impervious Layer and a Perforated Sheet 5.6. Measurements of the Sabine Absorption Coefficient and Room Constant 5.6.1. Reference Sound Source Method 5.6.2. Reverberation Time Method 5.6.3. Measurement of ¯for a Particular Material 5.7. Panel Sound Absorbers 5.8. Noise Reduction Coefficient (NRC) 5.9. Sound Absorption Coefficients of Materials in Combination 5.10. Reverberation Control 5.11. Additional Problems 6. Sound in Rooms 6.1. Introduction 6.2. Low Frequency Behaviour 6.3. Bound between Low-Frequency and High-Frequency Behaviour 6.3.1. Modal Density 6.3.2. Modal Damping and Bandwidth 6.3.3. Modal Overlap 6.3.4. Cross-Over Frequency 6.4. High-Frequency Behaviour 6.4.1. Relation between Source Sound Power and Room Sound Pressure Level 6.4.2. Relation between Room Absorption and Reverberation Time 6.5. Flat Room with Diffusely Reflecting Surfaces 6.6. Additional Problems 7. Partitions, Enclosures and Barriers 7.1. Introduction 7.2. Sound Transmission through Partitions 7.2.1. Bending Waves 7.2.2. Transmission Loss 7.2.3. Single-Leaf Panel Transmission Loss Calculation 7.2.4. Double Wall Transmission Loss 7.2.4.1. Staggered Studs 7.2.4.2. Panel Damping 7.2.5. Triple Wall Sound Transmission Loss 7.2.6. Sound-Absorptive Linings 7.2.7. Common Building Materials 7.3. Composite Transmission Loss 7.4. Enclosures 7.4.1. Enclosure Leakages (Large Enclosures) 7.4.2. Enclosure Access and Ventilation 7.4.3. Enclosure Vibration Isolation 7.5. Barriers 7.5.1. Diffraction at the Edge of a Thin Sheet 7.5.2. Outdoor Barriers 7.5.2.1. Thick Barriers 7.5.2.2. Shielding by Terrain 7.5.2.3. ISO 9613-2 Approach to Barrier Insertion Loss Calculations 7.5.3. Indoor Barriers 7.6. Additional Problems 8. Muffling Devices 8.1. Introduction 8.2. Measures of Performance 8.3. Design for a Required Performance 8.4. Diffusers as Muffling Devices 8.5. Classification of Muffling Devices 8.6. Acoustic Impedance 8.7. Impedances of Reactive Muffler Components 8.7.1. Impedance of an Orifice or Short, Narrow Tube 8.7.1.1. End Correction 8.7.1.2. Acoustic Resistance 8.7.2. Impedance of a Volume 8.8. Reactive Mufflers 8.8.1. Acoustical Analogues of Kirchhoff's Laws 8.8.2. Side Branch Resonator 8.8.2.1. End Corrections 8.8.2.2. Quality Factor 8.8.2.3. Power Dissipated 8.8.2.4. Insertion Loss Due to a Side Branch 8.8.2.5. Transmission Loss Due to a Side Branch 8.8.3. Expansion Chamber 8.8.3.1. Insertion Loss 8.8.3.2. Transmission Loss 8.8.4. Lowpass Filter 8.9. Dissipative Mufflers 8.9.1. Liner Specification 8.9.2. Lined Duct Design 8.9.2.1. Temperature Effects 8.9.2.2. Higher Order Mode Propagation 8.9.3. Inlet Attenuation 8.9.4. Cross-Sectional Discontinuities 8.9.5. Splitter Mufflers 8.10. Insertion Loss of Duct Bends or Elbows 8.11. Insertion Loss of Unlined Ducts 8.12. Effect of Duct End Reflections 8.13. Pressure Loss Calculations for Muffling Devices 8.13.1. Pressure Losses Due to Friction 8.13.2. Dynamic Pressure Losses 8.13.3. Splitter Muffler Pressure Loss 8.13.4. Circular Muffler Pressure Loss 8.13.5. Staggered Splitter Pressure Loss 8.14. Flow-Generated Noise 8.14.1. Straight, Unlined Air Duct Noise Generation 8.14.2. Mitred Bend Noise Generation 8.14.3. Splitter Muffler Self-Noise Generation 8.14.4. Exhaust Stack Pin Noise 8.14.5. Self-Noise Generation of Air Conditioning System Elements 8.15. Duct Break-Out Noise 8.15.1. Break-Out Sound Transmission 8.15.2. Break-In Sound Transmission 8.16. Lined Plenum Attenuator 8.16.1. Wells' Method 8.16.2. ASHRAE (2015) Method 8.17. Directivity of Exhaust Ducts 8.18. Additional Problems A. Properties of Materials References Index