ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nielsen's Food Analysis

دانلود کتاب تجزیه و تحلیل مواد غذایی نیلسن

Nielsen's Food Analysis

مشخصات کتاب

Nielsen's Food Analysis

ویرایش: [6 ed.] 
نویسندگان: ,   
سری: Food Science Text 
ISBN (شابک) : 9783031506420 
ناشر: Springer 
سال نشر: 2024 
تعداد صفحات: 632
[633] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Nielsen's Food Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل مواد غذایی نیلسن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل مواد غذایی نیلسن

این ویرایش ششم اطلاعاتی در مورد تکنیک های مورد نیاز برای تجزیه و تحلیل مواد غذایی از نظر خواص شیمیایی و فیزیکی ارائه می دهد. این کتاب برای دوره های کارشناسی تجزیه و تحلیل مواد غذایی ایده آل است و همچنین یک مرجع ارزشمند برای متخصصان صنایع غذایی است. فصل‌های اطلاعات عمومی در مورد مقررات، نمونه‌برداری برچسب‌گذاری و مدیریت داده‌ها اطلاعات پس‌زمینه‌ای را برای فصل‌های روش‌های خاص برای تعیین ترکیب شیمیایی و ویژگی‌ها، خواص فیزیکی و ترکیبات مورد توجه ارائه می‌دهند. روش های تجزیه و تحلیل اطلاعاتی در مورد اصول اساسی، مزایا، محدودیت ها و کاربردها را پوشش می دهد. اطلاعات در مورد کاربردهای تجزیه و تحلیل مواد غذایی در تعدادی از فصل‌ها که تکنیک‌های تحلیلی پایه را پوشش می‌دهد، گسترش یافته است. مربیانی که کتاب درسی را قبول می کنند می توانند برای دسترسی به وب سایتی با مطالب آموزشی مرتبط با ب. اسماعیل تماس بگیرند.


توضیحاتی درمورد کتاب به خارجی

This sixth edition provides information on techniques needed to analyze foods for chemical and physical properties. The book is ideal for undergraduate courses in food analysis and it is also an invaluable reference for professionals in the food industry. General information chapters on regulations, labeling sampling, and data handling provide background information for chapters on specific methods to determine chemical composition and characteristics, physical properties, and constituents of concern. Methods of analysis cover information on the basic principles, advantages, limitations, and applications. The information on food analysis applications has been expanded in a number of chapters that cover basic analytical techniques. Instructors who adopt the textbook can contact B. Ismail for access to a website with related teaching materials.



فهرست مطالب

Cover
Food Science Text Series
Nielsen's Food Analysis
Copyright
Dedication
Preface and Acknowledgments
Contents
Contributors
Abbreviations
Part I. General Information
	1. Introduction to Food Analysis
		1.1	 Introduction
		1.2	 Reasons for Analyzing Foods and Types of Samples Analyzed
			1.2.1	 Overview
			1.2.2	 Consumer Trends and Demands
			1.2.3	 Government Regulations and International Standards and Policies
			1.2.4	 Food Industry Management of Product Quality
				1.2.4.1 Raw Ingredients to Final Product
				1.2.4.2	 Types of Samples Analyzed
				1.2.4.3	 Increasing Dependence on Suppliers
				1.2.4.4	 Properties Analyzed
		1.3	 Steps in Analysis
			1.3.1	 Select and Prepare Sample
			1.3.2	 Perform the Assay
			1.3.3	 Calculate and Interpret the Results
		1.4	 Method Selection
			1.4.1	 Objective of the Assay
			1.4.2	 Characteristics of the Method
			1.4.3	 Validity of the Method
				1.4.3.1	 Overview
				1.4.3.2	 Standard Reference Materials
				1.4.3.3	 ISO Accreditation
			1.4.4	 Consideration of Food Composition
		1.5	 Official Methods
			1.5.1	 AOAC International
			1.5.2	 Other Endorsed Methods
		1.6	 Summary
		1.7	 Study Questions
		References
	2. US Government Regulations and International Standards Related to Food Analysis
		2.1	 Introduction
		2.2	 US Federal Regulations Affecting Food Composition
			2.2.1	 US Food and Drug Administration (FDA)
				2.2.1.1 Legislative History
				2.2.1.2 Food Definitions and Standards
				2.2.1.3 Inspection and Enforcement
			2.2.2	 US Department of Agriculture (USDA)
				2.2.2.1 Standards of Identity for Meat Products
				2.2.2.2 Grade Standards
				2.2.2.3 Inspection Programs
			2.2.3	 US Department of Commerce
				2.2.3.1 Seafood Inspection Service
				2.2.3.2 Interaction Between FDA and Environmental Protection Agency (EPA)
			2.2.4	 US Alcohol and Tobacco Tax and Trade Bureau
				2.2.4.1 Regulatory Responsibility for Alcoholic Beverages
				2.2.4.2 Standards and Composition of Beer, Wine, and Distilled Beverage Spirits
			2.2.5	 US Environmental Protection Agency (EPA)
				2.2.5.1 Pesticide Registration and Tolerance Levels
				2.2.5.2 Drinking Water Standards and Contaminants
				2.2.5.3 Effluent Composition from Food Processing Plants
			2.2.6	 US Customs and Border Protection (CBP)
			2.2.7	 US Federal Trade Commission (FTC)
				2.2.7.1 Enforcement Authority
				2.2.7.2 Food Labels, Food Composition, and Deceptive Advertising
		2.3	 Regulations and Recommendations for Milk
			2.3.1	 FDA Responsibilities
			2.3.2	 USDA Responsibilities
			2.3.3	 State Responsibilities
		2.4	 Regulations and Recommendations for Shellfish
		2.5	 Specifications for Foods Purchased by Government Agencies
		2.6	 International Standards and Policies
			2.6.1	 Codex Alimentarius
			2.6.2	 Other Standards
		2.7	 Summary
		2.8	 Study Questions
		References
	3. Nutrition Labeling
		3.1	 Introduction
		3.2	 U.S. Food and Drug Administration Food Labeling Regulations
			3.2.1	 Mandatory Nutrition Labeling
				3.2.1.1 Format
				3.2.1.2 Daily Values and Serving Size
				3.2.1.3 Rounding Rules
				3.2.1.4 Caloric Content
				3.2.1.5 Carbohydrate Food Components
				3.2.1.6 Protein Quality
			3.2.2	 Compliance
				3.2.2.1 Sample Collection
				3.2.2.2 Methods of Analysis
				3.2.2.3 FDA-Approved Databases
				3.2.2.4 Levels for Compliance
			3.2.3	 Nutrient Content Claims
			3.2.4	 Health Claims
			3.2.5	 Structure/Function Claims
		3.3	 U.S. Department of Agriculture Food Labeling Regulations
		3.4	 Summary
		3.5	 Study Questions
		References
	4. Evaluation of Analytical Data
		4.1	 Introduction
		4.2	 Measures of Central Tendency
		4.3	 Reliability of Analysis
			4.3.1	 Accuracy and Precision
			4.3.2	 Sources of Errors [3]
			4.3.3	 Specificity
			4.3.4	 Sensitivity and Limit of Detection [5]
			4.3.5	 Quality Control Measures [1–3]
		4.4	 Curve Fitting: Regression Analysis [2–4]
			4.4.1	 Linear Regression [2–4]
			4.4.2	 Correlation Coefficient
			4.4.3	 Errors in Regression Lines
		4.5	 Reporting Results
			4.5.1	 Significant Figures
			4.5.2	 Outlier Data and Testing [2, 3]
		4.6	 Summary
		4.7	 Study Questions
		4.8	 Practice Problems
		References
	5. Sampling and Sample Preparation
		5.1	 Introduction
		5.2	 Definition and Purpose of Inspection
			5.2.1	 Types of Sampling
			5.2.2	 Sample Size Estimation: Variable Sampling
			5.2.3	 Sample Size Estimation: Attribute Sampling
				5.2.3.1 Acceptance Sampling: Consumer Risk and Producer Risk
				5.2.3.2 Zero Tolerance Plans
		5.3	 The Nature of the Population and Product
			5.3.1	 Types of Populations and Products
			5.3.2	 Sampling Methods
				5.3.2.1 Simple Random Sampling
				5.3.2.2 Systematic Sampling
				5.3.2.3 Stratified Sampling
				5.3.2.4 Cluster Sampling
				5.3.2.5 Composite Sampling
		5.4	 The Nature of the Testing Method
		5.5	 Preparation of Samples
			5.5.1	 Problems in Sample Storage
			5.5.2	 General Size Reduction Considerations
			5.5.3	 Grinding
			5.5.4	 Applications for Grinding Equipment
			5.5.5	 Determination of Particle Size
			5.5.6	 Enzymatic Inactivation
			5.5.7	 Lipid Oxidation Protection
			5.5.8	 Microbial Growth and Contamination
		5.6	 Summary
		5.7	 Study Questions
		References
Part II. Spectroscopy and Mass Spectrometry
	6. Basic Principles of Spectroscopy
		6.1	 Introduction
		6.2	 Light
			6.2.1	 Properties
			6.2.2	 Interference
		6.3	 Energy States of Matter
			6.3.1	 Quantum Nature of Matter
			6.3.2	 Electronic, Vibrational, and Rotational Energy Levels
			6.3.3	 Nuclear Energy Levels in Applied Magnetic Fields
		6.4	 Energy-Level Transitions in Spectroscopy
			6.4.1	 Absorption of Radiation
			6.4.2	 Emission of Radiation
			6.4.3	 Population of Energy Levels
		6.5	 Introduction to Methods of Molecular and Atomic Spectroscopy
		6.6	 Summary
		6.7	 Study Questions
		References
	7. Ultraviolet, Visible, and Fluorescence Spectroscopy
		7.1	 Introduction
		7.2	 Ultraviolet and Visible Absorption Spectroscopy
			7.2.1	 The Basis of Quantitative Absorption Spectroscopy
			7.2.2	 Deviations from Beer’s Law
			7.2.3	 Procedural Considerations
			7.2.4	 Calibration Curves
			7.2.5	 The Effect of an Indiscriminate Instrumental Error on the Precision of Absorption Measurements
			7.2.6	 Instrumentation
				7.2.6.1 The Light Source
				7.2.6.2 The Monochromator
				7.2.6.3 The Detector
				7.2.6.4 The Readout Device
			7.2.7	 Instrument Design
			7.2.8	 Characteristics of UV–vis Absorbing Species
		7.3	 Fluorescence Spectroscopy
		7.4	 Summary
		7.5	 Study Questions
		7.6	 Practice Problems
		References
	8. Infrared and Raman Spectroscopy
		8.1	 Introduction
		8.2	 The Principles of IR Spectroscopy
			8.2.1	 The IR Region of the Electromagnetic Spectrum
			8.2.2	 Molecular Vibrations
			8.2.3	 Factors Affecting the Frequency of Vibration
		8.3	Mid-IR Spectroscopy
			8.3.1	 Instrumentation
				8.3.1.1 Overview
				8.3.1.2 Fourier Transform Instruments
			8.3.2	 Sample Handling Techniques
			8.3.3	 Applications of Mid-IR Spectroscopy
				8.3.3.1 Absorption Bands of Organic Functional Groups
				8.3.3.2 Applications of Mid-IR Spectroscopy
		8.4	 Near-IR Spectroscopy
			8.4.1	 Principles
				8.4.1.1 Principles of Diffuse Reflection Measurements
				8.4.1.2 Absorption Bands in the Near-IR Region
			8.4.2	 Instrumentation
			8.4.3	 Quantitative Methods Using Infrared Spectroscopy
			8.4.4	 Qualitative Analysis by Infrared Spectroscopy
			8.4.5	 Applications of Near-IR Spectroscopy to Food Analysis
		8.5	 Raman Spectroscopy
			8.5.1	 Principles
			8.5.2	 Instrumentation
			8.5.3	 Surface-Enhanced Raman Scattering (SERS)
			8.5.4	 Applications of Raman Spectroscopy
		8.6	 Handheld and Portable Technology
		8.7	 Summary
		8.8	 Study Questions
		References
	9. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma Mass Spectrometry
		9.1	 Introduction
		9.2	 Atomic Absorption Spectroscopy
			9.2.1	 Principles of Flame Atomic Absorption Spectroscopy
			9.2.2	 Principles of Electrothermal (Graphite Furnace) Atomic Absorption Spectroscopy
			9.2.3	 Instrumentation for Atomic Absorption Spectroscopy
				9.2.3.1 Radiation Source
				9.2.3.2 Atomizers
			9.2.4	 Safety Precautions for Atomic Absorption Analysis
			9.2.5	 Interferences in Atomic Absorption Spectroscopy
				9.2.5.1 Spectral Interferences
				9.2.5.2 Nonspectral Interferences
		9.3	 Atomic Emission Spectroscopy
			9.3.1	 Principles of Flame Emission Spectroscopy
			9.3.2	 Principles of Inductively Coupled Plasma Optical Emission Spectroscopy
			9.3.3	 Instrumentation for Inductively Coupled Plasma Optical Emission Spectroscopy
				9.3.3.1 Argon Plasma Torch
					9.3.3.1.1 Characteristics of an Argon Plasma Torch
					9.3.3.1.2 Sample Introduction and Analyte Excitation
					9.3.3.1.3 Radial and Axial Viewing
				9.3.3.2 Detectors and Optical Systems
			9.3.4	 Interferences in Inductively Coupled Plasma Optical Emission Spectroscopy
		9.4	 Applications of Atomic Absorption and Emission Spectroscopy
			9.4.1	 Uses
			9.4.2	 Practical Considerations
		9.5	 Inductively Coupled Plasma Mass Spectrometry
			9.5.1	 Principles of Inductively Coupled Plasma Mass Spectrometry
			9.5.2	 Interferences in Inductively Coupled Plasma Mass Spectrometry
		9.6	 Comparison of AAS, ICP-OES, and ICP-MS
		9.7	 Summary
		9.8	 Study Questions
		9.9	 Practice Problems
		References
	10. Nuclear Magnetic Resonance
		10.1	 Introduction
		10.2	 Principles of NMR Spectroscopy
			10.2.1	 Magnetic Field
			10.2.2	 Radio-Frequency Pulse and Relaxation
			10.2.3	 Chemical Shift and Shielding
			10.2.4	 1-D NMR Experiment
			10.2.5	 Coupling and 2-D NMR
		10.3	 NMR Spectrometer
		10.4	 Applications
			10.4.1	 NMR Techniques and General Applications
				10.4.1.1	 Liquids
				10.4.1.2	 Solids
				10.4.1.3	 Magnetic Resonance Imaging
				10.4.1.4	 Relaxometry
				10.4.1.5	 TD-NMR for Content Analyses
			10.4.2	 Specific Food Application Examples
				10.4.2.1	 Oil/Fat
					10.4.2.1.1 Fatty Acid Profile
					10.4.2.1.2 Verification of Vegetable Oil Identity
					10.4.2.1.3 Monitoring of Oxidation
					10.4.2.1.4 Solid Fat Content (SFC)
				10.4.2.2	 Water
				10.4.2.3	 Ingredient Assays
		10.5	 Summary
		10.6	 Study Questions
		References
			Resource Materials
	11. Mass Spectrometry
		11.1	 Introduction
		11.2	 Instrumentation: The Mass Spectrometer
			11.2.1	 Overview
			11.2.2	 Sample Introduction
				11.2.2.1	 Static Method
				11.2.2.2	 Dynamic Method
			11.2.3	 Ionization
				11.2.3.1	 Electron Impact Ionization (EI)
				11.2.3.2	 Electrospray Ionization (ESI)
				11.2.3.3	 Atmospheric Pressure Chemical Ionization (APCI)
				11.2.3.4	 Atmospheric Pressure Photoionization (APPI)
				11.2.3.5	 Matrix-Assisted Laser Desorption Ionization (MALDI)
				11.2.3.6	 Matrix Effects on Ionization
				11.2.3.7	 Transition from Ion Source to Mass Analyzer
			11.2.4	 Mass Analyzers
				11.2.4.1	 Overview
				11.2.4.2	 Quadrupole Mass Analyzers (Q)
				11.2.4.3	 Ion Trap (IT) Mass Analyzers
				11.2.4.4	 Time-of-Flight Mass Analyzer (TOF)
				11.2.4.5	 Fourier Transform-Based Mass Spectrometry (FTMS)
		11.3	 Interpretation of Mass Spectra
		11.4	 Gas Chromatography-Mass Spectrometry
		11.5	 Liquid Chromatography–Mass Spectrometry
		11.6	 Tandem Mass Spectrometry
		11.7	 High-Resolution Mass Spectrometry (HRMS)
		11.8	 Applications
		11.9	 Summary
		11.10	 Study Questions
		References
			Resource Materials
Part III. Chromatography
	12. Basic Principles of Chromatography
		12.1	 Introduction
		12.2	 Extraction
			12.2.1	 Batch Extraction
			12.2.2	 Continuous Extraction
			12.2.3	 Countercurrent Extraction
		12.3	 Chromatography
			12.3.1	 Historical Perspective
			12.3.2	 General Terminology
			12.3.3	 Gas Chromatography
			12.3.4	 Liquid Chromatography
				12.3.4.1	 Planar Chromatography
					12.3.4.1.1 Paper Chromatography
					12.3.4.1.2 Thin-Layer Chromatography
				12.3.4.2	 Column Liquid Chromatography
			12.3.5	 Supercritical Fluid Chromatography
		12.4	 Physicochemical Principles of Chromatographic Separation
			12.4.1	 Adsorption (Liquid–Solid) Chromatography
			12.4.2	 Partition (Liquid–Liquid) Chromatography
				12.4.2.1	 Introduction
				12.4.2.2	 Coated Supports
				12.4.2.3	 Bonded Supports
			12.4.3	 Hydrophilic Interaction Liquid Chromatography
			12.4.4	 Hydrophobic Interaction Chromatography
			12.4.5	 Ion-Exchange Chromatography
			12.4.6	 Affinity Chromatography
			12.4.7	 Size-Exclusion Chromatography
		12.5	 Analysis of Chromatographic Peaks
			12.5.1	 Separation and Resolution
				12.5.1.1	 Developing a Separation
				12.5.1.2	 Chromatographic Resolution
					12.5.1.2.1 Introduction
					12.5.1.2.2 Column Efficiency
					12.5.1.2.3 Column Selectivity
					12.5.1.2.4 Column Capacity Factor
			12.5.2	 Qualitative Analysis
			12.5.3	 Quantitative Analysis
		12.6	 Summary
		12.7	 Study Questions
		References
	13. High-Performance Liquid Chromatography
		13.1	 Introduction
		13.2	 Components of an HPLC System
			13.2.1	 Pump
			13.2.2	 Injector
			13.2.3	 Column
				13.2.3.1	 Column Hardware
					13.2.3.1.1 Precolumns
					13.2.3.1.2 Analytical Columns
				13.2.3.2	 HPLC Column Packing Materials
					13.2.3.2.1 General Requirements
					13.2.3.2.2 Silica-Based Column Packings
					13.2.3.2.3 Porous Polymeric Column Packings
				13.2.3.3	 Ultra-HPLC
			13.2.4	 Detector
				13.2.4.1	 UV-Vis Absorption Detectors
				13.2.4.2	 Fluorescence Detectors
				13.2.4.3	 Refractive Index Detectors
				13.2.4.4	 Electrochemical Detectors
				13.2.4.5	 Other HPLC Detectors
				13.2.4.6	 Coupled Analytical Techniques
				13.2.4.7	 Chemical Reactions
			13.2.5	 Data Station Systems
		13.3	 Applications in HPLC
			13.3.1	 Normal-Phase
				13.3.1.1	 Stationary and Mobile Phases
				13.3.1.2	 Applications of Normal-Phase HPLC
			13.3.2	 Hydrophilic Interaction
				13.3.2.1	 Stationary and Mobile Phases
				13.3.2.2	 Applications of Hydrophilic Interaction HPLC
			13.3.3	 Reversed-Phase
				13.3.3.1	 Stationary and Mobile Phases
				13.3.3.2	 Applications of Reversed-Phase HPLC
			13.3.4	 Hydrophobic Interaction
			13.3.5	 Ion Exchange
				13.3.5.1	 Stationary and Mobile Phases
				13.3.5.2	 Applications of Ion-Exchange HPLC
			13.3.6	 Size Exclusion
				13.3.6.1	 Column Packings and Mobile Phases
				13.3.6.2	 Applications of SE HPLC
			13.3.7	 Affinity
			13.3.8	 Multidimensional HPLC
		13.4	 Summary
		13.5	 Study Questions
		References
	14. Gas Chromatography
		14.1	 Introduction
		14.2	 Sample Preparation for Gas Chromatography
			14.2.1	 Introduction
			14.2.2	 Isolation of Analytes from Foods
				14.2.2.1	 Introduction
				14.2.2.2	 Headspace Methods
				14.2.2.3	 Distillation Methods
				14.2.2.4	 Solvent Extraction
				14.2.2.5	 Solid-Phase Extraction
				14.2.2.6	 Direct Injection
			14.2.3	 Sample Derivatization
		14.3	 Gas Chromatographic Hardware and Columns
			14.3.1	 Gas Supply System
			14.3.2	 Injection Port
				14.3.2.1	 Hardware
				14.3.2.2	 Sample Injection Techniques
					14.3.2.2.1 Split Injection
					14.3.2.2.2 Splitless Injection
					14.3.2.2.3 Programmed Temperature Vaporization Injection
					14.3.2.2.4 On-Column Injection
					14.3.2.2.5 Thermal Desorption Injection
			14.3.3	 Oven
			14.3.4	 Column and Stationary Phases
				14.3.4.1	 Packed Columns
				14.3.4.2	 Capillary Columns
				14.3.4.3	 Gas–Solid (PLOT) Chromatography
			14.3.5	 Detectors
				14.3.5.1	 Thermal Conductivity Detector
					14.3.5.1.1 Operating Principles
					14.3.5.1.2 Applications
				14.3.5.2	 Flame Ionization Detector
					14.3.5.2.1 Operating Principles
					14.3.5.2.2 Applications
				14.3.5.3	 Electron Capture Detector
					14.3.5.3.1 Operating Principles
					14.3.5.3.2 Applications
				14.3.5.4	 Flame Photometric Detector and Pulsed Flame Photometric Detector
					14.3.5.4.1 Operating Principles
					14.3.5.5.2 Applications
				14.3.5.5	 Photoionization Detector
					14.3.5.5.1 Operating Principles
					14.3.5.5.2 Applications
				14.3.5.6	 Electrolytic Conductivity Detector
					14.3.5.6.1 Operating Principles
					14.3.5.6.2 Applications
				14.3.5.7	 Thermionic Detector
					14.3.5.7.1 Operating Principles
					14.3.5.7.2 Applications
				14.3.5.8	 Hyphenated Gas Chromatographic Techniques
				14.3.5.9	 Multidimensional Gas Chromatography
					14.3.5.9.1 Conventional Two-Dimensional GC
					14.3.5.9.2 Comprehensive Two-Dimensional GC
		14.4	 Chromatographic Theory
			14.4.1	 Introduction
			14.4.2	 Separation Efficiency
				14.4.2.1	 Carrier Gas Flow Rates and Column Parameters
				14.4.2.2	 Carrier Gas Type
				14.4.2.3	 Summary of Separation Efficiency
		14.5	 Applications of GC
			14.5.1	 Residual Volatiles in Packaging Materials
			14.5.2	 Identification of Unknown Compounds
		14.6	 Summary
		14.7	 Study Questions
		References
Part IV. Compositional Analysis of Foods
	15. Moisture and Total Solids Analysis
		15.1	 Introduction
			15.1.1	 Importance of Moisture Assays
			15.1.2	 Water in Foods
				15.1.2.1	 Structure of the Water Molecule
				15.1.2.2	 Physical States and Properties of Water
				15.1.2.3	 Water Interactions with Food Ingredients
			15.1.3	 Sample Collection and Handling
		15.2	 Moisture/Water Content
			15.2.1	 Overview
			15.2.2	 Oven-Drying Methods
				15.2.2.1	 General Information
					15.2.2.1.1 Removal of Moisture
					15.2.2.1.2 Decomposition of Other Food Constituents
					15.2.2.1.3 Temperature Control
					15.2.2.1.4 Types of Pans for Oven-Drying Methods
					15.2.2.1.5 Handling and Preparation of Pans
					15.2.2.1.6 Control of Surface Crust Formation (Sand Pan Technique)
					15.2.2.1.7 Calculations
				15.2.2.2	 Forced Draft Oven
				15.2.2.3	 Vacuum Oven
				15.2.2.4	 Microwave Analyzer
				15.2.2.5	 Infrared Drying
				15.2.2.6	 Rapid Moisture Analyzer Technology
				15.2.2.7	 Thermogravimetric Analyzer
			15.2.3	 Distillation Procedures
				15.2.3.1	 Overview
				15.2.3.2	 Reflux Distillation with Immiscible Solvent
			15.2.4	 Chemical Method: Karl Fischer Titration
			15.2.5	 Physical Methods
				15.2.5.1	 Dielectric Method
				15.2.5.2	 Hydrometry
					15.2.5.2.1 Hydrometer
					15.2.5.2.2 Pycnometer
				15.2.5.3	 Refractometry
				15.2.5.4	 Infrared Analysis
				15.2.5.5	 Microwave Absorption
				15.2.5.6	 Freezing Point
			15.2.6	 Comparison of Moisture Content Determination Methods
				15.2.6.1	 Principles
				15.2.6.2	 Nature of Sample
				15.2.6.3	 Intended Purposes
		15.3	 Water Activity
			15.3.1	 Overview
			15.3.2	 Importance of Water Activity
			15.3.3	 Water Activity Measurement
				15.3.3.1	 Principles
				15.3.3.2	 Chilled Mirror Dewpoint
				15.3.3.3	 Electric Hygrometer
		15.4	 Moisture Sorption Isotherms
			15.4.1	 Overview
			15.4.2	 Isopiestic Desiccator Method
			15.4.3	 Automated Gravimetric Moisture Sorption Balance
			15.4.4	 Phase Diagrams Containing aw, Moisture Content, and Tg Relationships
		15.5	 Summary
		15.6	 Study Questions
		15.7	 Practice Problems
		References
	16. Ash Analysis
		16.1	 Introduction
			16.1.1	 Definitions
			16.1.2	 Importance of Ash in Food Analysis
			16.1.3	 Ash Contents in Foods
		16.2	 Methods
			16.2.1	 Sample Preparation
				16.2.1.1	 Plant Materials
				16.2.1.2	 Macronutrient Composition Effects
			16.2.2	 Dry Ashing
				16.2.2.1	 Principles and Instrumentation
				16.2.2.2	 Procedures
				16.2.2.3	 Special Applications
			16.2.3	 Wet Ashing
				16.2.3.1	 Principles, Materials, and Applications
				16.2.3.2	 Procedures
			16.2.4	 Microwave Ashing
				16.2.4.1	 Microwave Wet Ashing
				16.2.4.2	 Microwave Dry Ashing
			16.2.5	 Other Ash Measurements
		16.3	 Comparison of Methods
		16.4	 Summary
		16.5	 Study Questions
		16.6	 Practice Problems
		References
	17. Fat Analysis
		17.1	 Introduction
			17.1.1	 Definitions
			17.1.2	 General Classification
			17.1.3	 Content of Lipids in Foods
			17.1.4	 Importance of Analysis
			17.1.5	 General Considerations
		17.2	 Solvent Extraction Methods
			17.2.1	 Introduction
			17.2.2	 Sample Preparation
				17.2.2.1	 Predrying Sample
				17.2.2.2	 Particle Size Reduction
			17.2.3	 Solvent Selection
			17.2.4	 Continuous Solvent Extraction Method: Goldfisch Method
				17.2.4.1	 Principle and Characteristics
				17.2.4.2	 General Procedure
			17.2.5	 Semicontinuous Solvent Extraction Method: Soxhlet Method
				17.2.5.1	 Principle and Characteristics
				17.2.5.2	 General Procedure (See Fig. 17.2)
			17.2.6	 Discontinuous Solvent Extraction Methods
				17.2.6.1	 Alkaline Hydrolysis Method (Mojonnier Method)
					17.2.6.1.1 Principle and Characteristics
					17.2.6.1.2 General Procedure
				17.2.6.2	 Acid Hydrolysis Procedure
					17.2.6.2.1 Principle and Characteristics
					17.2.6.2.2 General Procedure
				17.2.6.3	 Chloroform–Methanol Procedure
					17.2.6.3.1 Principle and Characteristics
					17.2.6.3.2 General Procedure
			17.2.7	 Total Fat by Gas Chromatography for Nutrition Labeling
				17.2.7.1	 Principle
				17.2.7.2	 General Procedure
		17.3	 Nonsolvent Wet Extraction Methods
			17.3.1	 Babcock Method for Milk Fat
				17.3.1.1	 Principle
				17.3.1.2	 Applications
			17.3.2	 Gerber Method for Milk Fat
				17.3.2.1	 Principle
				17.3.2.2	 Applications
		17.4	 Instrumental Methods
			17.4.1	 Infrared Method
			17.4.2	 X-Ray Absorption Method
			17.4.3	 Nuclear Magnetic Resonance
			17.4.4	 Accelerated Solvent Extraction
			17.4.5	 Supercritical Fluid Extraction
		17.5	 Comparison of Methods
		17.6	 Summary
		17.7	 Study Questions
		17.8	 Practice Problems
		References
	18. Protein Analysis
		18.1	 Introduction
			18.1.1	 Classification and General Considerations
			18.1.2	 Importance of Analysis
			18.1.3	 Content in Foods
			18.1.4	 Introduction to Methods
		18.2	 Nitrogen-Based Methods
			18.2.1	 Kjeldahl Method
				18.2.1.1	 Principle
				18.2.1.2	 Historical Background
				18.2.1.3	 General Procedures and Reactions
					18.2.1.3.1 Sample Preparation
					18.2.1.3.2 Digestion
					18.2.1.3.3 Neutralization and Distillation
					18.2.1.3.4 Titration
					18.2.1.3.5 Calculations
				18.2.1.4	 Applications
			18.2.2	 Dumas (Nitrogen Combustion) Method
				18.2.2.1	 Principle
				18.2.2.2	 Procedure
				18.2.2.3	 Applications
		18.3	 Infrared Spectroscopy
			18.3.1	 Principle
			18.3.2	 Procedure
			18.3.3	 Applications
		18.4	 Colorimetric Methods
			18.4.1	 Dye-Binding Methods
				18.4.1.1	 Anionic Dye-Binding Method
					18.4.1.1.1 Principle
					18.4.1.1.2 Procedure
					18.4.1.1.3 Applications
				18.4.1.2	 Bradford Dye-Binding Method
					18.4.1.2.1 Principle
					18.4.1.2.2 Procedure
					18.4.1.2.3 Applications
			18.4.2	 Copper Ion-Based Methods
				18.4.2.1	 Biuret Method
					18.4.2.1.1 Principle
					18.4.2.1.2 Procedure
					18.4.2.1.3 Applications
				18.4.2.2	 Lowry Method
					18.4.2.2.1 Principle
					18.4.2.2.2 Procedure
					18.4.2.2.3 Applications
				18.4.2.3	 Bicinchoninic Acid Method
					18.4.2.3.1 Principle
					18.4.2.3.2 Procedure
					18.4.2.3.3 Applications
		18.5	 Ultraviolet Absorption Methods for Proteins and Peptides
			18.5.1	 Ultraviolet 280 nm Absorption for Protein
				18.5.1.1	 Principle
				18.5.1.2	 Procedure
				18.5.1.3	 Applications
			18.5.2	 Peptide Measurement at 190–220 nm
		18.6	 Nonprotein Nitrogen Determination
			18.6.1	 Principle
			18.6.2	 Procedure
			18.6.3	 Applications
		18.7	 Comparison of Methods
		18.8	 Special Considerations
		18.9	 Summary
		18.10	 Study Questions
		18.11	 Practice Problems
		References
	19. Carbohydrate Analysis
		19.1	 Introduction
		19.2	 Sample Preparation
			19.2.1	 General Information
			19.2.2	 Extraction and Cleanup for Determination of Mono- and Oligosaccharides
		19.3	 Total Carbohydrate: Phenol-Sulfuric Acid Method
			19.3.1	 Principle and Characteristics
			19.3.2	 Outline of Procedure
		19.4	 Mono- and Oligosaccharides
			19.4.1	 Total Reducing Sugars
				19.4.1.1	 Somogyi–Nelson Method
					19.4.1.1.1 Principle
					19.4.1.1.2 Outline of Procedure
				19.4.1.2	 Other Methods
			19.4.2	 Specific Analysis of Mono- and Oligosaccharides
				19.4.2.1	 High-Performance Liquid Chromatography
					19.4.2.1.1 Overview
					19.4.2.1.2 Anion-Exchange HPLC
					19.4.2.1.3 Pulsed Electrochemical Detection
					19.4.2.1.4 Other HPLC Methods
				19.4.2.2	 Gas Chromatography
					19.4.2.2.1 Overview
					19.4.2.2.2 Neutral Sugars: Outline of Procedure [31]
				19.4.2.3	 Enzymic Methods
					19.4.2.3.1 Overview
					19.4.2.3.2 Sample Preparation
					19.4.2.3.3 Enzymic Determination of D-Glucose (Dextrose)
				19.4.2.4	 Capillary Electrophoresis
		19.5	 Polysaccharides
			19.5.1	 Starch
				19.5.1.1	 Total Starch
					19.5.1.1.1 Principle and Procedure
					19.5.1.1.2 Potential Limitations
			19.5.2	 Non-starch Polysaccharides (Hydrocolloids/Food Gums)
				19.5.2.1	 Overview
				19.5.2.2	 Hydrocolloid Content Determination
				19.5.2.3	 Pectin
					19.5.2.3.1 Nature of Pectin
					19.5.2.3.2 Pectin Content Determination
		19.6	 Dietary Fiber
			19.6.1	 Definition
			19.6.2	 Methods
				19.6.2.1	 Overview
				19.6.2.2	 Sample Preparation
				19.6.2.3	 Enzymic-Gravimetric Method
					19.6.2.3.1 Total, Soluble, and Insoluble Dietary Fiber
					19.6.2.3.2 Dietary Fiber Components as Defined by Codex Alimentarius
		19.7	 Physical Methods
			19.7.1	 Measurements of Sugar Concentrations in Solution
			19.7.2	 Measurement of Starch Pasting Behavior and Thermal Properties
				19.7.2.1	 Starch Pasting Properties
				19.7.2.2	 Starch Thermal Properties
			19.7.3	 Mass Spectrometry
			19.7.4	 Mid-Infrared/Fourier Transform Infrared (FTIR) Spectroscopy
			19.7.5	 Near-Infrared (NIR) Spectroscopy
		19.8	 Summary
		19.9	 Study Questions
		19.10	 Practice Problems
		References
	20. Vitamin Analysis
		20.1	 Introduction
			20.1.1	 Definition and Importance
			20.1.2	 Importance of Analysis
			20.1.3	 Vitamin Units
			20.1.4	 Extraction Methods
			20.1.5	 Overview of Methods
		20.2	 Bioassay Methods
		20.3	 Microbiological Assays
			20.3.1	 Principle
			20.3.2	 Applications
			20.3.3	 Niacin
		20.4	 Chemical Methods
			20.4.1	 High-Performance Liquid Chromatography (HPLC) Methods
				20.4.1.1	 Overview
				20.4.1.2	 Vitamin A
				20.4.1.3	 Vitamin D
				20.4.1.4	 Vitamin E (Tocopherols and Tocotrienols)
			20.4.2	 Other Chemical Methods
				20.4.2.1	 Vitamin C
					20.4.2.1.1 2,6-Dichloroindophenol (DCIP) Titrimetric Method
					20.4.2.1.2 Microfluorometric Method
				20.4.2.2	 Thiamine (Vitamin B1) Thiochrome Fluorometric Method
				20.4.2.3	 Riboflavin (Vitamin B2) Fluorometric Method
		20.5	 Comparison of Methods
		20.6	 Summary
		20.7	 Study Questions
		20.8	 Practice Problems
		References
	21. Traditional Methods for Mineral Analysis
		21.1	 Introduction
			21.1.1	 Importance of Minerals in the Diet
			21.1.2	 Minerals in Food Processing
		21.2	 Basic Considerations
			21.2.1	 Nature of Analyses
			21.2.2	 Sample Preparation
			21.2.3	 Interferences
		21.3	 Methods
			21.3.1	 EDTA Complexometric Titration
				21.3.1.1	 Background Information
				21.3.1.2	 Principle
				21.3.1.3	 Procedure: Hardness of Water Using EDTA Titration
				21.3.1.4	 Applications
			21.3.2	 Precipitation Titration
				21.3.2.1	 Principles
				21.3.2.2	 Procedures
					21.3.2.2.1 Mohr Titration
					21.3.2.2.2 Volhard Titration
				21.3.2.3	 Applications
			21.3.3	 Colorimetric Methods
				21.3.3.1	 Principles
				21.3.3.2	 Procedures: Determination of Phosphorus in Milk
				21.3.3.3	 Applications
			21.3.4	 Ion-Selective Electrodes
				21.3.4.1	 Background Information
				21.3.4.2	 Principle
				21.3.4.3	 General Methodology
				21.3.4.4	 Electrode Calibration and Determination of Concentration
				21.3.4.5	 Applications
		21.4	 Benchtop Rapid Analyzers for Salt
		21.5	 Comparison of Methods
		21.6	 Summary
		21.7	 Study Questions
		21.8	 Practice Problems
		References
Part V. Chemical Characterization and Associated Assays
	22 pH and Titratable Acidity
		22.1	 Introduction
		22.2	 Calculation and Conversion for Neutralization Reactions
			22.2.1	 Concentration Units
			22.2.2	 Equation for Neutralization and Dilution
		22.3	 pH
			22.3.1	 Acid–Base Equilibria
			22.3.2	 pH Meter
				22.3.2.1	 General Principles
				22.3.2.2	 Guidelines for the Use of pH Meter
		22.4	 Titratable Acidity
			22.4.1	 Overview and Principle
			22.4.2	 General Considerations
				22.4.2.1	 Titration Curves of Strong and Weak Acids
				22.4.2.2	 Potentiometric Titration
				22.4.2.3	 Indicators
			22.4.3	 Preparation of Reagents
				22.4.3.1	 Standard Alkali
				22.4.3.2	 Standard Acid
			22.4.4	 Sample Analysis
			22.4.5	 Calculation of Titratable Acidity
			22.4.6	 Acid Content in Food
			22.4.7	 Volatile Acidity
			22.4.8	 Other Methods
		22.5	 Summary
		22.6	 Study Questions
		22.7	 Practice Problems
		References
	23. Fat Characterization
		23.1	 Introduction
			23.1.1	 Definitions and Classifications
			23.1.2	 Importance of Analyses
			23.1.3	 Lipid Content in Foods and Typical Values
		23.2	 General Considerations
			23.2.1	 Crude Fat/Oil Processing
			23.2.2	 Chemical Changes During Processing, Storage, and Use
				23.2.2.1	 Lipolysis
				23.2.2.2	 Lipid Oxidation
				23.2.2.3	 Frying Fats/Oils and Lipid Polymerization
			23.2.3	 Shelf-Life Determination
			23.2.4	 Sample Preparation
		23.3	 Physical Characterization
			23.3.1	 Refractive Index
				23.3.1.1	 Principle
				23.3.1.2	 Procedure
				23.3.1.3	 Applications
			23.3.2	 Melting Point
				23.3.2.1	 Principle
				23.3.2.2	 Applications
			23.3.3	 Smoke, Flash, and Fire Points
				23.3.3.1	 Principle
				23.3.3.2	 Procedure
				23.3.3.3	 Applications
			23.3.4	 Cold Test
				23.3.4.1	 Principle
				23.3.4.2	 Procedure
				23.3.4.3	 Applications
			23.3.5	 Cloud Point
				23.3.5.1	 Principle
				23.3.5.2	 Procedure
			23.3.6	 Color
				23.3.6.1	 Procedure
				23.3.6.2	 Applications
			23.3.7	 Solid Fat Content
				23.3.7.1	 Principle
				23.3.7.2	 Applications
			23.3.8	 Consistency and Spreadability
		23.4	 Chemical Characterization
			23.4.1	 Iodine Value
				23.4.1.1	 Principle
				23.4.1.2	 Procedure
				23.4.1.3	 Applications
			23.4.2	 Saponification Value
				23.4.2.1	 Principle
				23.4.2.2	 Procedure
				23.4.2.3	 Applications
			23.4.3	 Free Fatty Acids and Acid Value
				23.4.3.1	 Principle
				23.4.3.2	 Procedure
				23.4.3.3	 Applications
			23.4.4	 Conjugated Dienes
				23.4.4.1	 Principle
				23.4.4.2	 Procedure
				23.4.4.3	 Applications
			23.4.5	 Peroxide Value
				23.4.5.1	 Principle
				23.4.5.2	 Procedure
				23.4.5.3	 Applications
			23.4.6	 p-Anisidine Value and Totox Value
				23.4.6.1	 Principle
				23.4.6.2	 Procedure
				23.4.6.3	 Applications
			23.4.7	 Thiobarbituric Acid Reactive Substances
				23.4.7.1	 Principle
				23.4.7.2	 Procedure
				23.4.7.3	 Applications
			23.4.8	 Volatile Organic Compounds
				23.4.8.1	 Principle
				23.4.8.2	 Procedure
				23.4.8.3	 Applications
			23.4.9	 Total Polar Compounds
				23.4.9.1	 Principle
				23.4.9.2	 Procedure
				23.4.9.3	 Applications
			23.4.10	 Polymerized Triacylglycerols
		23.5	 Accelerated Stability Testing
			23.5.1	 Overview
			23.5.2	 Accelerated Shelf-Life Tests
				23.5.2.1	 Principle
				23.5.2.2	 Applications
			23.5.3	 Oil Stability Index
				23.5.3.1	 Principle
				23.5.3.2	 Applications
			23.5.4	 Oxygen ConsumptionTests
				23.5.4.1	 Principle
				23.5.4.2	 Applications
		23.6	 Lipid Fractions
			23.6.1	 Overview
			23.6.2	 Fatty Acids
				23.6.2.1	 Principle
				23.6.2.2	 Procedure
				23.6.2.3	 Applications
			23.6.3	 trans Isomer Fatty Acids
				23.6.3.1	 Principle
				23.6.3.2	 Procedure
				23.6.3.3	 Applications
			23.6.4	 Mono-, Di-, and Triacylglycerols
			23.6.5	 Cholesterol and Phytosterols
				23.6.5.1	 Principle
				23.6.5.2	 Procedure
				23.6.5.3	 Applications
			23.6.6	 Thin-Layer Chromatography of Lipid Fractions
				23.6.6.1	 Procedure
				23.6.6.2	 Applications
		23.7	 Summary
		23.8	 Study Questions
		23.9	 Practice Problems
		References
	24. Protein Separation and Characterization Procedures
		24.1	 Introduction
		24.2	 Methods of Protein Separation and Isolation
			24.2.1	 Initial Considerations
			24.2.2	 Dry Fractionation
			24.2.3	 Separation Based on Differential Solubility
				24.2.3.1	 Principle
				24.2.3.2	 Procedures
					24.2.3.2.1 pH-Assisted Solubilization and Precipitation
					24.2.3.2.2 Salting-In and Salting-Out
					24.2.3.2.3 Solvent Fractionation
					24.2.3.2.4 Thermal Denaturation
			24.2.4	 Separation by Adsorption Chromatography
				24.2.4.1	 Principle
				24.2.4.2	 Procedures
					24.2.4.2.1 Ion-Exchange Chromatography
					24.2.4.2.2 Affinity Chromatography
					24.2.4.2.3 Hydrophobic Interaction Chromatography
			24.2.5	 Separation by Size
				24.2.5.1	 Principle
				24.2.5.2	 Procedures
					24.2.5.2.1 Dialysis
					24.2.5.2.2 Membrane Processes
					24.2.5.2.3 Size-Exclusion Chromatography
			24.2.6	 Separation by Electrophoresis
				24.2.6.1	 Polyacrylamide Gel Electrophoresis
					24.2.6.1.1 Principle
					24.2.6.1.2 Procedures
					24.2.6.1.3 Applications
				24.2.6.2	 Isoelectric Focusing
					24.2.6.2.1 Principle
					24.2.6.2.2 Procedure
					24.2.6.2.3 Applications
				24.2.6.3	 Capillary Electrophoresis
					24.2.6.3.1 Principle
					24.2.6.3.2 Procedure
					24.2.6.3.3 Applications
		24.3	 Protein Characterization Procedures
			24.3.1	 Amino Acid Analysis
				24.3.1.1	 Principle
				24.3.1.2	 Procedures
				24.3.1.3	 Applications
			24.3.2	 Protein Nutritional Quality
				24.3.2.1	 Introduction
				24.3.2.2	 Protein Digestibility – Corrected Amino Acid Score
					24.3.2.2.1 Principle
					24.3.2.2.2 Procedure
					24.3.2.2.3 Applications
				24.3.2.3	 Protein Efficiency Ratio
					24.3.2.3.1 Principle
					24.3.2.3.2 Procedure
					24.3.2.3.3 Application
				24.3.2.4	 Other Protein Nutritional Quality Tests
					24.3.2.4.1 Essential Amino Acid Index
					24.3.2.4.2 In Vitro Protein Digestibility
					24.3.2.4.3 Lysine Availability
			24.3.3	 Assessment of Protein Structural Properties
				24.3.3.1	 Introduction
				24.3.3.2	 Molecular Weight Distribution
				24.3.3.3	 Denaturation
				24.3.3.4	 Surface Properties
					24.3.3.4.1 Surface Hydrophobicity
					24.3.3.4.2 Surface Charge
			24.3.4	 Assessment of Protein Functional Properties
				24.3.4.1	 Introduction
				24.3.4.2	 Water Hydration/Binding Capacity and Viscosity
				24.3.4.3	 Dispersibility Index and Solubility
				24.3.4.4	 Oil Binding Capacity
				24.3.4.5	 Emulsification
				24.3.4.6	 Foaming
				24.3.4.7	 Protein Network Formation
					24.3.4.7.1 Gelation and Water Holding Capacity
					24.3.4.7.2 Dough Formation
					24.3.4.7.3 Texturization
				24.3.4.8	 Applications of Testing for Protein Functionality
		24.4	 Summary
		24.5	 Study Questions
		24.6	 Practice Problems
		References
	25. Determination of (Total) Phenolics and Antioxidant Capacity in Food and Ingredients
		25.1	 Introduction
		25.2	 Analysis of (Total) Phenolics
			25.2.1	 Sample Preparation
				25.2.1.1	 Extraction
				25.2.1.2	 Hydrolysis
			25.2.2	 Colorimetric Assays for Determination of “Total” Phenolics
				25.2.2.1	 Folin-Ciocalteu Assay
				25.2.2.2	 Fast Blue BB Assay
			25.2.3	 Chromatographic Methods
				25.2.3.1	 High-Performance Liquid Chromatography
				25.2.3.2	 Gas Chromatography
		25.3	 Antioxidant Capacity Assays
			25.3.1	 General Principles and Limitations of Antioxidant Capacity Assays
			25.3.2	 Hydrogen Atom Transfer (HAT) Assays
				25.3.2.1	 Oxygen Radical Absorbance Capacity (ORAC) Assay
			25.3.3	 Single Electron Transfer (SET) Assays
				25.3.3.1	 Trolox Equivalent Antioxidant Capacity (TEAC) Assay
				25.3.3.2	 2,2-Diphenyl-1-Picryhydrazyl Radical (DPPH) Assay
				25.3.3.3	 Ferric Reducing Antioxidant Power (FRAP) Assay
			25.3.4	 Assays Based on Oxidation of Lipids
		25.4	 Summary
		25.5	 Study Questions
		References
	26. Application of Enzymes in Food Analysis
		26.1	 Introduction
		26.2	 Principles
			26.2.1	 Enzyme Kinetics
				26.2.1.1	 Overview
				26.2.1.2	 Michaelis-Menten Equation
				26.2.1.3	 Apparent Order of Simple Enzyme Reactions
				26.2.1.4	 Determination of KM and Vmax
			26.2.2	 Factors That Affect Enzyme Reaction Rate
				26.2.2.1	 Effect of Enzyme Concentration
				26.2.2.2	 Effect of Substrate Concentration
				26.2.2.3	 Environmental Effects
					26.2.2.3.1 Effect of Temperature on Enzyme Activity
					26.2.2.3.2 Effect of pH on Enzyme Activity
				26.2.2.4	 Activators and Inhibitors
					26.2.2.4.1 Activators
					26.2.2.4.2 Inhibitors
			26.2.3	 Methods of Measurement
				26.2.3.1	 Overview
				26.2.3.2	 Coupled Reactions
		26.3	 Applications
			26.3.1	 Substrate Assays
				26.3.1.1	 Sample Preparation
				26.3.1.2	 Total Change/Endpoint Methods
				26.3.1.3	 Specific Applications
					26.3.1.3.1 Measurement of Sulfite
					26.3.1.3.2 Colorimetric Determination of Glucose
					26.3.1.3.3 Starch/Dextrin Content
					26.3.1.3.4 Determination of D-Malic Acid in Apple Juice
			26.3.2	 Enzyme Activity Assays
				26.3.2.1	 Peroxidase Activity
				26.3.2.2	 Lipoxygenase
				26.3.2.3	 Phosphatase Assay
				26.3.2.4	 α-Amylase Activity
				26.3.2.5	 Rennet Activity
				26.3.2.6	 Pectinmethylesterease Activity
			26.3.3	 Biosensors/Immobilized Enzymes
			26.3.4	 Structural Analysis of Enzymes
		26.4	 Summary
		26.5	 Study Questions
		References
	27. Immunoassays
		27.1	 Introduction
			27.1.1	 Definitions
			27.1.2	 Binding Between Antigen and Antibody
			27.1.3	 Types of Antibodies
		27.2	 Theory of Immunoassays
		27.3	 Solid-Phase Immunoassays
			27.3.1	 Overview
			27.3.2	 ELISA
				27.3.2.1	 Introduction
				27.3.2.2	 Direct Versus Indirect Detection
				27.3.2.3	 Noncompetitive Versus Competitive Immunoassay Variations
					27.3.2.3.1 Noncompetitive ELISA
					27.3.2.3.2 Competitive Immunoassays
			27.3.3	 Immunoblots
				27.3.3.1	 Western Blot
				27.3.3.2	 Dot Blot
			27.3.4	 Lateral Flow Strip Test
				27.3.4.1	 Overview
				27.3.4.2	 Procedure
				27.3.4.3	 Applications
		27.4	 Immunoaffinity Purification
		27.5	 Applications
		27.6	 Summary
		27.7	 Study Questions
		References
	28. Determination of Oxygen Demand
		28.1	 Introduction
		28.2	 Methods
			28.2.1	 Biochemical Oxygen Demand (BOD)
				28.2.1.1	 Principle
				28.2.1.2	 Procedure
				28.2.1.3	 Applications and Limitations
			28.2.2	 Chemical Oxygen Demand (COD)
				28.2.2.1	 Principle
				28.2.2.2	 Procedure
				28.2.2.3	 Applications and Limitations
		28.3	 Comparison of BOD and COD Methods
		28.4	 Sampling and Handling Requirements
		28.5	 Summary
		28.6	 Study Questions
		28.7	 Practice Problems
		References
Part VI. Analysis of Physical Properties of Foods
	29. Rheological Principles for Food Analysis
		29.1	 Introduction
			29.1.1	 Rheology and the Food Industry
			29.1.2	 Rheological Methods in the Food Industry
			29.1.3	 Basic Assumptions for Fundamental Rheological Methods
		29.2	 Fundamentals of Rheology
			29.2.1	 Concepts of Stress, Strain, and (Shear) Strain Rate
			29.2.2	 Elastic and Shear Moduli
			29.2.3	 Viscosity Profiles
		29.3	 Standard Rheometry
			29.3.1	 Compression, Extension, and Torsion Analyses
				29.3.1.1	 Large-Strain Testing
					29.3.1.1.1 Determining Stress, Strain, and Elastic Modulus (E) in Compression
					29.3.1.1.2 Texture Profile Analysis
				29.3.1.2	 Fracture Testing
			29.3.2	 Rotational Viscometry
				29.3.2.1	 Fundamental Geometries for Steady Shear Measurements
				29.3.2.2	 Common Devices for Measuring Viscosity in the Food Industry
			29.3.3	 Oscillatory Rheometry
			29.3.4	 Novel Rheological Methods
				29.3.4.1	 Tribology
				29.3.4.2	 Extensional Viscosity
				29.3.4.3	 Large Amplitude Oscillatory Shear
		29.4	 Selecting Rheological Tests
			29.4.1	 Determining Required Information
			29.4.2	 Sample Considerations
			29.4.3	 Testing Considerations
			29.4.4	 Other Considerations
		29.5	 Summary
		29.6	 Glossary
		29.7	 Nomenclature
		29.8	 Study Questions
		References
	30. Thermal Analysis
		30.1	 Introduction
		30.2	 Materials Science
			30.2.1	 Amorphous Structure
			30.2.2	 Crystalline Structure
			30.2.3	 Semi-crystalline Structure
			30.2.4	 Thermodynamic and Kinetic Properties
		30.3	 Principles and Methods
			30.3.1	 Thermogravimetric Analysis
				30.3.1.1	 Overview
				30.3.1.2	 Experimental Conditions
				30.3.1.3	 Common Measurements
			30.3.2	 Differential Scanning Calorimetry
				30.3.2.1	 Overview
				30.3.2.2	 Experimental Conditions
				30.3.2.3	 Common Measurements
			30.3.3	 Modulated Temperature DSC
				30.3.3.1	 Overview
				30.3.3.2	 Experimental Conditions
				30.3.3.3	 Common Measurements
		30.4	 Understanding the Effect of Structure on Physical Properties
			30.4.1	 Connecting Changes in Gelatin Structure as Probed by DSC to Its Physical Properties
			30.4.2	 Gelatin Lab or Home Experiment
		30.5	 Summary
		30.6	 Study Questions
		References
	31. Color Analysis
		31.1	 Introduction
		31.2	 Physiological Basis of Color
		31.3	 Color Specification and Order Systems
			31.3.1	 Visual Systems: The Munsell Color System
			31.3.2	 Instrumental Systems: The CIE Color Specification Systems
			31.3.3	 The CIE Tristimulus System and the Tristimulus Values
			31.3.4	 The Hunter Lab and the CIELAB Color Spaces
		31.4	 Instrumental Measurement of Color
			31.4.1	 Colorimeters vs Spectrophotometers for Color Measurement
			31.4.2	 Reflection and Transmission Measurements
			31.4.3	 Advanced Optical Systems: Digital Imaging Techniques
		31.5	 Color Measurements in the Food Industry
			31.5.1	 Color Measurements as a Tool for Quality Control
			31.5.2	 Color Differences and Color Tolerances for Industrial Applications
			31.5.3	 Color Measurements to Monitor Shelf-Life
			31.5.4	 Practical Considerations for Sample Preparation and Presentation
		31.6	 Summary
		31.7	 Study Questions
		References
	32. Food Microstructure Techniques
		32.1	 Introduction
		32.2	 Microscopy
			32.2.1	 Introduction
			32.2.2	 Light Microscopy
				32.2.2.1	 Introduction
				32.2.2.2	 Contrasting Modes
				32.2.2.3	 Fluorescence Microscopy
				32.2.2.4	 Histology
			32.2.3	 Electron Microscopy
			32.2.4	 Energy-Dispersive X-Ray Spectroscopy
			32.2.5	 Atomic Force Microscopy
		32.3	 Chemical Imaging
			32.3.1	 Introduction
			32.3.2	 Fourier Transform Infrared Microscopy
			32.3.3	 Confocal Raman Microscopy
			32.3.4	 Confocal Laser Scanning Microscopy
			32.3.5	 Hyperspectral Imaging
		32.4	 X-Ray Diffraction
		32.5	 Tomography
			32.5.1	 Introduction
			32.5.2	 X-Ray Computed Tomography
		32.6	 Case Studies
			32.6.1	 Fat Blends
			32.6.2	 Food Emulsions
		32.7	 Summary
		32.8	 Study Questions
		References
Part VII. Analysis of Objectionable Matter and Constituents
	33. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern
		33.1	 Introduction: Current and Emerging Food Hazards
		33.2	 Analytical Approach
			33.2.1	 Choice of Analytical Method
				33.2.1.1	 Qualitative or Semiquantitative Methods
				33.2.1.2	 Quantitative Methods
			33.2.2	 Sample Preparation
				33.2.2.1	 Introduction
				33.2.2.2	 Sample Homogenization
				33.2.2.3	 Extraction and Cleanup
					33.2.2.3.1 Introduction
					33.2.2.3.2 Solid-Phase Microextraction
					33.2.2.3.3 QuEChERS
					33.2.2.3.4 Energized-Dispersive Guided Extraction
					33.2.2.3.5 Microwave-Assisted Solvent Extraction
				33.2.2.4	 Derivatization
		33.3	 Pesticide Residue Analysis
			33.3.1	 Introduction
			33.3.2	 Types of Analytical Methods
			33.3.3	 Analytical Techniques Used for the Detection, Identification, and/or Quantification
				33.3.3.1	 Biochemical Techniques
				33.3.3.2	 Chromatographic Techniques
					33.3.3.2.1 Thin-Layer Chromatography
					33.3.3.2.2 Gas Chromatography
					33.3.3.2.3 High-Performance Liquid Chromatography
				33.3.3.3	 Mass Spectrometry Detection
					33.3.3.3.1 Gas Chromatography-Mass Spectrometry
					33.3.3.3.2 High-Performance Liquid Chromatography-Mass Spectrometry
		33.4	 Mycotoxin Analysis
			33.4.1	 Introduction
			33.4.2	 Sampling
			33.4.3	 Detection and Determination
				33.4.3.1	 Rapid Methods of Detection
					33.4.3.1.1 TLC
					33.4.3.1.2 Immunoassays
				33.4.3.2	 Quantitative and Confirmative Chemical Methods
					33.4.3.2.1 HPLC
					33.4.3.2.2 GC
					33.4.3.2.3 Capillary Electrophoresis
				33.4.3.3	 Other Methods of Analysis
		33.5	 Antibiotic Residue Analysis
			33.5.1	 Introduction
			33.5.2	 Detection and Determination
				33.5.2.1	 Screening Methods
				33.5.2.2	 Determinative and Confirmatory Methods
		33.6	 Analysis of GMOs
			33.6.1	 Introduction
			33.6.2	 DNA Methods
				33.6.2.1	 DNA Extraction
				33.6.2.2	 PCR Amplification
				33.6.2.3	 DNA Analysis
			33.6.3	 Protein Methods
		33.7	 Allergen Analysis
			33.7.1	 Introduction
			33.7.2	 Protein Methods
				33.7.2.1	 General Considerations
				33.7.2.2	 Protein-Based Analytical Techniques
			33.7.3	 DNA Methods
		33.8	 Analysis of Other Chemical Contaminants and Undesirable Constituents
			33.8.1	 Introduction
			33.8.2	 Sulfites
			33.8.3	 Nitrates/Nitrites
		33.9	 Summary
		33.10	 Study Questions
		References
	34. Analysis for Extraneous Matter
		34.1	 Introduction
			34.1.1 Federal Food, Drug, and Cosmetic Act
			34.1.2 Good Manufacturing Practices
			34.1.3 Defect Action Levels
			34.1.4 Purposes of Analyses
		34.2	 General Considerations
			34.2.1 Definition of Terms
			34.2.2 Diagnostic Characteristics of Filth
		34.3	 Official and Approved Methods
		34.4	 Basic Analysis
			34.4.1 Sieving Method
			34.4.2 Sedimentation Method
			34.4.3 Flotation Methods
				34.4.3.1	 Cracking-Flotation Method
				34.4.3.2	 Light Filth Flotation Method
			34.4.4 Subjectivity of Methods
		34.5	 Other Techniques
			34.5.1 Overview
			34.5.2 X-Ray Radiography
			34.5.3 X-Ray Microtomography
			34.5.4 Electrical Conductance Method
			34.5.5 Olfactory-Based Methods
				34.5.5.1	 Solid-Phase Microextraction (SPME)
				34.5.5.2	 Electronic Nose (E-nose)
			34.5.6 Impact-Acoustic Emission
			34.5.7 Microscopy Techniques
			34.5.8 Near-Infrared Spectroscopy
			34.5.9 Artificial Intelligence-Based Techniques
			34.5.10 Molecular-Based Methods
			34.5.11 Enzyme-Linked Immunosorbent Assays
		34.6	 Comparison of Methods
		34.7	 Isolation Principles Applied to Food Processing
		34.8	 Summary
		34.9	 Study Questions
		References
	35. Food Forensic Investigation
		35.1	 Introduction
		35.2	 Typical/Atypical Issues Requiring Forensic Analysis
			35.2.1	 Foreign Material Contamination
			35.2.2	 Food Authenticity and Adulteration
		35.3	 Essential Elements of Food Forensic Teams
			35.3.1	 Nature of Food Forensic Teams
			35.3.2	 Planning and Design
			35.3.3	 Documentation
			35.3.4	 Quality Assurance and Quality Control
			35.3.5	 Sampling and Logistics
		35.4	 Ask Questions Before Analysis Begins
		35.5	 Analyzing “Problem Samples”
			35.5.1	 Foreign Material Contamination
				35.5.1.1	 Introduction
				35.5.1.2	 Chemical Composition
				35.5.1.3	 Elemental Composition
				35.5.1.4	 Physical and Structural Identification
			35.5.2	 Off-Flavors and Taints
				35.5.2.1	 Strategy and Supportive Examples
				35.5.2.2	 Off-Odors and Taint Determination
		35.6	 Identifying the What, Where, When, and How of an Issue
		35.7	 Interpreting and Reporting Data
		35.8	 Summary
		35.9	 Study Questions
		References
Index




نظرات کاربران