دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [6 ed.] نویسندگان: Ismail P.B., Nielsen S.S. (ed.) سری: Food Science Text ISBN (شابک) : 9783031506420 ناشر: Springer سال نشر: 2024 تعداد صفحات: 632 [633] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Nielsen's Food Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل مواد غذایی نیلسن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش ششم اطلاعاتی در مورد تکنیک های مورد نیاز برای تجزیه و تحلیل مواد غذایی از نظر خواص شیمیایی و فیزیکی ارائه می دهد. این کتاب برای دوره های کارشناسی تجزیه و تحلیل مواد غذایی ایده آل است و همچنین یک مرجع ارزشمند برای متخصصان صنایع غذایی است. فصلهای اطلاعات عمومی در مورد مقررات، نمونهبرداری برچسبگذاری و مدیریت دادهها اطلاعات پسزمینهای را برای فصلهای روشهای خاص برای تعیین ترکیب شیمیایی و ویژگیها، خواص فیزیکی و ترکیبات مورد توجه ارائه میدهند. روش های تجزیه و تحلیل اطلاعاتی در مورد اصول اساسی، مزایا، محدودیت ها و کاربردها را پوشش می دهد. اطلاعات در مورد کاربردهای تجزیه و تحلیل مواد غذایی در تعدادی از فصلها که تکنیکهای تحلیلی پایه را پوشش میدهد، گسترش یافته است. مربیانی که کتاب درسی را قبول می کنند می توانند برای دسترسی به وب سایتی با مطالب آموزشی مرتبط با ب. اسماعیل تماس بگیرند.
This sixth edition provides information on techniques needed to analyze foods for chemical and physical properties. The book is ideal for undergraduate courses in food analysis and it is also an invaluable reference for professionals in the food industry. General information chapters on regulations, labeling sampling, and data handling provide background information for chapters on specific methods to determine chemical composition and characteristics, physical properties, and constituents of concern. Methods of analysis cover information on the basic principles, advantages, limitations, and applications. The information on food analysis applications has been expanded in a number of chapters that cover basic analytical techniques. Instructors who adopt the textbook can contact B. Ismail for access to a website with related teaching materials.
Cover Food Science Text Series Nielsen's Food Analysis Copyright Dedication Preface and Acknowledgments Contents Contributors Abbreviations Part I. General Information 1. Introduction to Food Analysis 1.1 Introduction 1.2 Reasons for Analyzing Foods and Types of Samples Analyzed 1.2.1 Overview 1.2.2 Consumer Trends and Demands 1.2.3 Government Regulations and International Standards and Policies 1.2.4 Food Industry Management of Product Quality 1.2.4.1 Raw Ingredients to Final Product 1.2.4.2 Types of Samples Analyzed 1.2.4.3 Increasing Dependence on Suppliers 1.2.4.4 Properties Analyzed 1.3 Steps in Analysis 1.3.1 Select and Prepare Sample 1.3.2 Perform the Assay 1.3.3 Calculate and Interpret the Results 1.4 Method Selection 1.4.1 Objective of the Assay 1.4.2 Characteristics of the Method 1.4.3 Validity of the Method 1.4.3.1 Overview 1.4.3.2 Standard Reference Materials 1.4.3.3 ISO Accreditation 1.4.4 Consideration of Food Composition 1.5 Official Methods 1.5.1 AOAC International 1.5.2 Other Endorsed Methods 1.6 Summary 1.7 Study Questions References 2. US Government Regulations and International Standards Related to Food Analysis 2.1 Introduction 2.2 US Federal Regulations Affecting Food Composition 2.2.1 US Food and Drug Administration (FDA) 2.2.1.1 Legislative History 2.2.1.2 Food Definitions and Standards 2.2.1.3 Inspection and Enforcement 2.2.2 US Department of Agriculture (USDA) 2.2.2.1 Standards of Identity for Meat Products 2.2.2.2 Grade Standards 2.2.2.3 Inspection Programs 2.2.3 US Department of Commerce 2.2.3.1 Seafood Inspection Service 2.2.3.2 Interaction Between FDA and Environmental Protection Agency (EPA) 2.2.4 US Alcohol and Tobacco Tax and Trade Bureau 2.2.4.1 Regulatory Responsibility for Alcoholic Beverages 2.2.4.2 Standards and Composition of Beer, Wine, and Distilled Beverage Spirits 2.2.5 US Environmental Protection Agency (EPA) 2.2.5.1 Pesticide Registration and Tolerance Levels 2.2.5.2 Drinking Water Standards and Contaminants 2.2.5.3 Effluent Composition from Food Processing Plants 2.2.6 US Customs and Border Protection (CBP) 2.2.7 US Federal Trade Commission (FTC) 2.2.7.1 Enforcement Authority 2.2.7.2 Food Labels, Food Composition, and Deceptive Advertising 2.3 Regulations and Recommendations for Milk 2.3.1 FDA Responsibilities 2.3.2 USDA Responsibilities 2.3.3 State Responsibilities 2.4 Regulations and Recommendations for Shellfish 2.5 Specifications for Foods Purchased by Government Agencies 2.6 International Standards and Policies 2.6.1 Codex Alimentarius 2.6.2 Other Standards 2.7 Summary 2.8 Study Questions References 3. Nutrition Labeling 3.1 Introduction 3.2 U.S. Food and Drug Administration Food Labeling Regulations 3.2.1 Mandatory Nutrition Labeling 3.2.1.1 Format 3.2.1.2 Daily Values and Serving Size 3.2.1.3 Rounding Rules 3.2.1.4 Caloric Content 3.2.1.5 Carbohydrate Food Components 3.2.1.6 Protein Quality 3.2.2 Compliance 3.2.2.1 Sample Collection 3.2.2.2 Methods of Analysis 3.2.2.3 FDA-Approved Databases 3.2.2.4 Levels for Compliance 3.2.3 Nutrient Content Claims 3.2.4 Health Claims 3.2.5 Structure/Function Claims 3.3 U.S. Department of Agriculture Food Labeling Regulations 3.4 Summary 3.5 Study Questions References 4. Evaluation of Analytical Data 4.1 Introduction 4.2 Measures of Central Tendency 4.3 Reliability of Analysis 4.3.1 Accuracy and Precision 4.3.2 Sources of Errors [3] 4.3.3 Specificity 4.3.4 Sensitivity and Limit of Detection [5] 4.3.5 Quality Control Measures [1–3] 4.4 Curve Fitting: Regression Analysis [2–4] 4.4.1 Linear Regression [2–4] 4.4.2 Correlation Coefficient 4.4.3 Errors in Regression Lines 4.5 Reporting Results 4.5.1 Significant Figures 4.5.2 Outlier Data and Testing [2, 3] 4.6 Summary 4.7 Study Questions 4.8 Practice Problems References 5. Sampling and Sample Preparation 5.1 Introduction 5.2 Definition and Purpose of Inspection 5.2.1 Types of Sampling 5.2.2 Sample Size Estimation: Variable Sampling 5.2.3 Sample Size Estimation: Attribute Sampling 5.2.3.1 Acceptance Sampling: Consumer Risk and Producer Risk 5.2.3.2 Zero Tolerance Plans 5.3 The Nature of the Population and Product 5.3.1 Types of Populations and Products 5.3.2 Sampling Methods 5.3.2.1 Simple Random Sampling 5.3.2.2 Systematic Sampling 5.3.2.3 Stratified Sampling 5.3.2.4 Cluster Sampling 5.3.2.5 Composite Sampling 5.4 The Nature of the Testing Method 5.5 Preparation of Samples 5.5.1 Problems in Sample Storage 5.5.2 General Size Reduction Considerations 5.5.3 Grinding 5.5.4 Applications for Grinding Equipment 5.5.5 Determination of Particle Size 5.5.6 Enzymatic Inactivation 5.5.7 Lipid Oxidation Protection 5.5.8 Microbial Growth and Contamination 5.6 Summary 5.7 Study Questions References Part II. Spectroscopy and Mass Spectrometry 6. Basic Principles of Spectroscopy 6.1 Introduction 6.2 Light 6.2.1 Properties 6.2.2 Interference 6.3 Energy States of Matter 6.3.1 Quantum Nature of Matter 6.3.2 Electronic, Vibrational, and Rotational Energy Levels 6.3.3 Nuclear Energy Levels in Applied Magnetic Fields 6.4 Energy-Level Transitions in Spectroscopy 6.4.1 Absorption of Radiation 6.4.2 Emission of Radiation 6.4.3 Population of Energy Levels 6.5 Introduction to Methods of Molecular and Atomic Spectroscopy 6.6 Summary 6.7 Study Questions References 7. Ultraviolet, Visible, and Fluorescence Spectroscopy 7.1 Introduction 7.2 Ultraviolet and Visible Absorption Spectroscopy 7.2.1 The Basis of Quantitative Absorption Spectroscopy 7.2.2 Deviations from Beer’s Law 7.2.3 Procedural Considerations 7.2.4 Calibration Curves 7.2.5 The Effect of an Indiscriminate Instrumental Error on the Precision of Absorption Measurements 7.2.6 Instrumentation 7.2.6.1 The Light Source 7.2.6.2 The Monochromator 7.2.6.3 The Detector 7.2.6.4 The Readout Device 7.2.7 Instrument Design 7.2.8 Characteristics of UV–vis Absorbing Species 7.3 Fluorescence Spectroscopy 7.4 Summary 7.5 Study Questions 7.6 Practice Problems References 8. Infrared and Raman Spectroscopy 8.1 Introduction 8.2 The Principles of IR Spectroscopy 8.2.1 The IR Region of the Electromagnetic Spectrum 8.2.2 Molecular Vibrations 8.2.3 Factors Affecting the Frequency of Vibration 8.3 Mid-IR Spectroscopy 8.3.1 Instrumentation 8.3.1.1 Overview 8.3.1.2 Fourier Transform Instruments 8.3.2 Sample Handling Techniques 8.3.3 Applications of Mid-IR Spectroscopy 8.3.3.1 Absorption Bands of Organic Functional Groups 8.3.3.2 Applications of Mid-IR Spectroscopy 8.4 Near-IR Spectroscopy 8.4.1 Principles 8.4.1.1 Principles of Diffuse Reflection Measurements 8.4.1.2 Absorption Bands in the Near-IR Region 8.4.2 Instrumentation 8.4.3 Quantitative Methods Using Infrared Spectroscopy 8.4.4 Qualitative Analysis by Infrared Spectroscopy 8.4.5 Applications of Near-IR Spectroscopy to Food Analysis 8.5 Raman Spectroscopy 8.5.1 Principles 8.5.2 Instrumentation 8.5.3 Surface-Enhanced Raman Scattering (SERS) 8.5.4 Applications of Raman Spectroscopy 8.6 Handheld and Portable Technology 8.7 Summary 8.8 Study Questions References 9. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma Mass Spectrometry 9.1 Introduction 9.2 Atomic Absorption Spectroscopy 9.2.1 Principles of Flame Atomic Absorption Spectroscopy 9.2.2 Principles of Electrothermal (Graphite Furnace) Atomic Absorption Spectroscopy 9.2.3 Instrumentation for Atomic Absorption Spectroscopy 9.2.3.1 Radiation Source 9.2.3.2 Atomizers 9.2.4 Safety Precautions for Atomic Absorption Analysis 9.2.5 Interferences in Atomic Absorption Spectroscopy 9.2.5.1 Spectral Interferences 9.2.5.2 Nonspectral Interferences 9.3 Atomic Emission Spectroscopy 9.3.1 Principles of Flame Emission Spectroscopy 9.3.2 Principles of Inductively Coupled Plasma Optical Emission Spectroscopy 9.3.3 Instrumentation for Inductively Coupled Plasma Optical Emission Spectroscopy 9.3.3.1 Argon Plasma Torch 9.3.3.1.1 Characteristics of an Argon Plasma Torch 9.3.3.1.2 Sample Introduction and Analyte Excitation 9.3.3.1.3 Radial and Axial Viewing 9.3.3.2 Detectors and Optical Systems 9.3.4 Interferences in Inductively Coupled Plasma Optical Emission Spectroscopy 9.4 Applications of Atomic Absorption and Emission Spectroscopy 9.4.1 Uses 9.4.2 Practical Considerations 9.5 Inductively Coupled Plasma Mass Spectrometry 9.5.1 Principles of Inductively Coupled Plasma Mass Spectrometry 9.5.2 Interferences in Inductively Coupled Plasma Mass Spectrometry 9.6 Comparison of AAS, ICP-OES, and ICP-MS 9.7 Summary 9.8 Study Questions 9.9 Practice Problems References 10. Nuclear Magnetic Resonance 10.1 Introduction 10.2 Principles of NMR Spectroscopy 10.2.1 Magnetic Field 10.2.2 Radio-Frequency Pulse and Relaxation 10.2.3 Chemical Shift and Shielding 10.2.4 1-D NMR Experiment 10.2.5 Coupling and 2-D NMR 10.3 NMR Spectrometer 10.4 Applications 10.4.1 NMR Techniques and General Applications 10.4.1.1 Liquids 10.4.1.2 Solids 10.4.1.3 Magnetic Resonance Imaging 10.4.1.4 Relaxometry 10.4.1.5 TD-NMR for Content Analyses 10.4.2 Specific Food Application Examples 10.4.2.1 Oil/Fat 10.4.2.1.1 Fatty Acid Profile 10.4.2.1.2 Verification of Vegetable Oil Identity 10.4.2.1.3 Monitoring of Oxidation 10.4.2.1.4 Solid Fat Content (SFC) 10.4.2.2 Water 10.4.2.3 Ingredient Assays 10.5 Summary 10.6 Study Questions References Resource Materials 11. Mass Spectrometry 11.1 Introduction 11.2 Instrumentation: The Mass Spectrometer 11.2.1 Overview 11.2.2 Sample Introduction 11.2.2.1 Static Method 11.2.2.2 Dynamic Method 11.2.3 Ionization 11.2.3.1 Electron Impact Ionization (EI) 11.2.3.2 Electrospray Ionization (ESI) 11.2.3.3 Atmospheric Pressure Chemical Ionization (APCI) 11.2.3.4 Atmospheric Pressure Photoionization (APPI) 11.2.3.5 Matrix-Assisted Laser Desorption Ionization (MALDI) 11.2.3.6 Matrix Effects on Ionization 11.2.3.7 Transition from Ion Source to Mass Analyzer 11.2.4 Mass Analyzers 11.2.4.1 Overview 11.2.4.2 Quadrupole Mass Analyzers (Q) 11.2.4.3 Ion Trap (IT) Mass Analyzers 11.2.4.4 Time-of-Flight Mass Analyzer (TOF) 11.2.4.5 Fourier Transform-Based Mass Spectrometry (FTMS) 11.3 Interpretation of Mass Spectra 11.4 Gas Chromatography-Mass Spectrometry 11.5 Liquid Chromatography–Mass Spectrometry 11.6 Tandem Mass Spectrometry 11.7 High-Resolution Mass Spectrometry (HRMS) 11.8 Applications 11.9 Summary 11.10 Study Questions References Resource Materials Part III. Chromatography 12. Basic Principles of Chromatography 12.1 Introduction 12.2 Extraction 12.2.1 Batch Extraction 12.2.2 Continuous Extraction 12.2.3 Countercurrent Extraction 12.3 Chromatography 12.3.1 Historical Perspective 12.3.2 General Terminology 12.3.3 Gas Chromatography 12.3.4 Liquid Chromatography 12.3.4.1 Planar Chromatography 12.3.4.1.1 Paper Chromatography 12.3.4.1.2 Thin-Layer Chromatography 12.3.4.2 Column Liquid Chromatography 12.3.5 Supercritical Fluid Chromatography 12.4 Physicochemical Principles of Chromatographic Separation 12.4.1 Adsorption (Liquid–Solid) Chromatography 12.4.2 Partition (Liquid–Liquid) Chromatography 12.4.2.1 Introduction 12.4.2.2 Coated Supports 12.4.2.3 Bonded Supports 12.4.3 Hydrophilic Interaction Liquid Chromatography 12.4.4 Hydrophobic Interaction Chromatography 12.4.5 Ion-Exchange Chromatography 12.4.6 Affinity Chromatography 12.4.7 Size-Exclusion Chromatography 12.5 Analysis of Chromatographic Peaks 12.5.1 Separation and Resolution 12.5.1.1 Developing a Separation 12.5.1.2 Chromatographic Resolution 12.5.1.2.1 Introduction 12.5.1.2.2 Column Efficiency 12.5.1.2.3 Column Selectivity 12.5.1.2.4 Column Capacity Factor 12.5.2 Qualitative Analysis 12.5.3 Quantitative Analysis 12.6 Summary 12.7 Study Questions References 13. High-Performance Liquid Chromatography 13.1 Introduction 13.2 Components of an HPLC System 13.2.1 Pump 13.2.2 Injector 13.2.3 Column 13.2.3.1 Column Hardware 13.2.3.1.1 Precolumns 13.2.3.1.2 Analytical Columns 13.2.3.2 HPLC Column Packing Materials 13.2.3.2.1 General Requirements 13.2.3.2.2 Silica-Based Column Packings 13.2.3.2.3 Porous Polymeric Column Packings 13.2.3.3 Ultra-HPLC 13.2.4 Detector 13.2.4.1 UV-Vis Absorption Detectors 13.2.4.2 Fluorescence Detectors 13.2.4.3 Refractive Index Detectors 13.2.4.4 Electrochemical Detectors 13.2.4.5 Other HPLC Detectors 13.2.4.6 Coupled Analytical Techniques 13.2.4.7 Chemical Reactions 13.2.5 Data Station Systems 13.3 Applications in HPLC 13.3.1 Normal-Phase 13.3.1.1 Stationary and Mobile Phases 13.3.1.2 Applications of Normal-Phase HPLC 13.3.2 Hydrophilic Interaction 13.3.2.1 Stationary and Mobile Phases 13.3.2.2 Applications of Hydrophilic Interaction HPLC 13.3.3 Reversed-Phase 13.3.3.1 Stationary and Mobile Phases 13.3.3.2 Applications of Reversed-Phase HPLC 13.3.4 Hydrophobic Interaction 13.3.5 Ion Exchange 13.3.5.1 Stationary and Mobile Phases 13.3.5.2 Applications of Ion-Exchange HPLC 13.3.6 Size Exclusion 13.3.6.1 Column Packings and Mobile Phases 13.3.6.2 Applications of SE HPLC 13.3.7 Affinity 13.3.8 Multidimensional HPLC 13.4 Summary 13.5 Study Questions References 14. Gas Chromatography 14.1 Introduction 14.2 Sample Preparation for Gas Chromatography 14.2.1 Introduction 14.2.2 Isolation of Analytes from Foods 14.2.2.1 Introduction 14.2.2.2 Headspace Methods 14.2.2.3 Distillation Methods 14.2.2.4 Solvent Extraction 14.2.2.5 Solid-Phase Extraction 14.2.2.6 Direct Injection 14.2.3 Sample Derivatization 14.3 Gas Chromatographic Hardware and Columns 14.3.1 Gas Supply System 14.3.2 Injection Port 14.3.2.1 Hardware 14.3.2.2 Sample Injection Techniques 14.3.2.2.1 Split Injection 14.3.2.2.2 Splitless Injection 14.3.2.2.3 Programmed Temperature Vaporization Injection 14.3.2.2.4 On-Column Injection 14.3.2.2.5 Thermal Desorption Injection 14.3.3 Oven 14.3.4 Column and Stationary Phases 14.3.4.1 Packed Columns 14.3.4.2 Capillary Columns 14.3.4.3 Gas–Solid (PLOT) Chromatography 14.3.5 Detectors 14.3.5.1 Thermal Conductivity Detector 14.3.5.1.1 Operating Principles 14.3.5.1.2 Applications 14.3.5.2 Flame Ionization Detector 14.3.5.2.1 Operating Principles 14.3.5.2.2 Applications 14.3.5.3 Electron Capture Detector 14.3.5.3.1 Operating Principles 14.3.5.3.2 Applications 14.3.5.4 Flame Photometric Detector and Pulsed Flame Photometric Detector 14.3.5.4.1 Operating Principles 14.3.5.5.2 Applications 14.3.5.5 Photoionization Detector 14.3.5.5.1 Operating Principles 14.3.5.5.2 Applications 14.3.5.6 Electrolytic Conductivity Detector 14.3.5.6.1 Operating Principles 14.3.5.6.2 Applications 14.3.5.7 Thermionic Detector 14.3.5.7.1 Operating Principles 14.3.5.7.2 Applications 14.3.5.8 Hyphenated Gas Chromatographic Techniques 14.3.5.9 Multidimensional Gas Chromatography 14.3.5.9.1 Conventional Two-Dimensional GC 14.3.5.9.2 Comprehensive Two-Dimensional GC 14.4 Chromatographic Theory 14.4.1 Introduction 14.4.2 Separation Efficiency 14.4.2.1 Carrier Gas Flow Rates and Column Parameters 14.4.2.2 Carrier Gas Type 14.4.2.3 Summary of Separation Efficiency 14.5 Applications of GC 14.5.1 Residual Volatiles in Packaging Materials 14.5.2 Identification of Unknown Compounds 14.6 Summary 14.7 Study Questions References Part IV. Compositional Analysis of Foods 15. Moisture and Total Solids Analysis 15.1 Introduction 15.1.1 Importance of Moisture Assays 15.1.2 Water in Foods 15.1.2.1 Structure of the Water Molecule 15.1.2.2 Physical States and Properties of Water 15.1.2.3 Water Interactions with Food Ingredients 15.1.3 Sample Collection and Handling 15.2 Moisture/Water Content 15.2.1 Overview 15.2.2 Oven-Drying Methods 15.2.2.1 General Information 15.2.2.1.1 Removal of Moisture 15.2.2.1.2 Decomposition of Other Food Constituents 15.2.2.1.3 Temperature Control 15.2.2.1.4 Types of Pans for Oven-Drying Methods 15.2.2.1.5 Handling and Preparation of Pans 15.2.2.1.6 Control of Surface Crust Formation (Sand Pan Technique) 15.2.2.1.7 Calculations 15.2.2.2 Forced Draft Oven 15.2.2.3 Vacuum Oven 15.2.2.4 Microwave Analyzer 15.2.2.5 Infrared Drying 15.2.2.6 Rapid Moisture Analyzer Technology 15.2.2.7 Thermogravimetric Analyzer 15.2.3 Distillation Procedures 15.2.3.1 Overview 15.2.3.2 Reflux Distillation with Immiscible Solvent 15.2.4 Chemical Method: Karl Fischer Titration 15.2.5 Physical Methods 15.2.5.1 Dielectric Method 15.2.5.2 Hydrometry 15.2.5.2.1 Hydrometer 15.2.5.2.2 Pycnometer 15.2.5.3 Refractometry 15.2.5.4 Infrared Analysis 15.2.5.5 Microwave Absorption 15.2.5.6 Freezing Point 15.2.6 Comparison of Moisture Content Determination Methods 15.2.6.1 Principles 15.2.6.2 Nature of Sample 15.2.6.3 Intended Purposes 15.3 Water Activity 15.3.1 Overview 15.3.2 Importance of Water Activity 15.3.3 Water Activity Measurement 15.3.3.1 Principles 15.3.3.2 Chilled Mirror Dewpoint 15.3.3.3 Electric Hygrometer 15.4 Moisture Sorption Isotherms 15.4.1 Overview 15.4.2 Isopiestic Desiccator Method 15.4.3 Automated Gravimetric Moisture Sorption Balance 15.4.4 Phase Diagrams Containing aw, Moisture Content, and Tg Relationships 15.5 Summary 15.6 Study Questions 15.7 Practice Problems References 16. Ash Analysis 16.1 Introduction 16.1.1 Definitions 16.1.2 Importance of Ash in Food Analysis 16.1.3 Ash Contents in Foods 16.2 Methods 16.2.1 Sample Preparation 16.2.1.1 Plant Materials 16.2.1.2 Macronutrient Composition Effects 16.2.2 Dry Ashing 16.2.2.1 Principles and Instrumentation 16.2.2.2 Procedures 16.2.2.3 Special Applications 16.2.3 Wet Ashing 16.2.3.1 Principles, Materials, and Applications 16.2.3.2 Procedures 16.2.4 Microwave Ashing 16.2.4.1 Microwave Wet Ashing 16.2.4.2 Microwave Dry Ashing 16.2.5 Other Ash Measurements 16.3 Comparison of Methods 16.4 Summary 16.5 Study Questions 16.6 Practice Problems References 17. Fat Analysis 17.1 Introduction 17.1.1 Definitions 17.1.2 General Classification 17.1.3 Content of Lipids in Foods 17.1.4 Importance of Analysis 17.1.5 General Considerations 17.2 Solvent Extraction Methods 17.2.1 Introduction 17.2.2 Sample Preparation 17.2.2.1 Predrying Sample 17.2.2.2 Particle Size Reduction 17.2.3 Solvent Selection 17.2.4 Continuous Solvent Extraction Method: Goldfisch Method 17.2.4.1 Principle and Characteristics 17.2.4.2 General Procedure 17.2.5 Semicontinuous Solvent Extraction Method: Soxhlet Method 17.2.5.1 Principle and Characteristics 17.2.5.2 General Procedure (See Fig. 17.2) 17.2.6 Discontinuous Solvent Extraction Methods 17.2.6.1 Alkaline Hydrolysis Method (Mojonnier Method) 17.2.6.1.1 Principle and Characteristics 17.2.6.1.2 General Procedure 17.2.6.2 Acid Hydrolysis Procedure 17.2.6.2.1 Principle and Characteristics 17.2.6.2.2 General Procedure 17.2.6.3 Chloroform–Methanol Procedure 17.2.6.3.1 Principle and Characteristics 17.2.6.3.2 General Procedure 17.2.7 Total Fat by Gas Chromatography for Nutrition Labeling 17.2.7.1 Principle 17.2.7.2 General Procedure 17.3 Nonsolvent Wet Extraction Methods 17.3.1 Babcock Method for Milk Fat 17.3.1.1 Principle 17.3.1.2 Applications 17.3.2 Gerber Method for Milk Fat 17.3.2.1 Principle 17.3.2.2 Applications 17.4 Instrumental Methods 17.4.1 Infrared Method 17.4.2 X-Ray Absorption Method 17.4.3 Nuclear Magnetic Resonance 17.4.4 Accelerated Solvent Extraction 17.4.5 Supercritical Fluid Extraction 17.5 Comparison of Methods 17.6 Summary 17.7 Study Questions 17.8 Practice Problems References 18. Protein Analysis 18.1 Introduction 18.1.1 Classification and General Considerations 18.1.2 Importance of Analysis 18.1.3 Content in Foods 18.1.4 Introduction to Methods 18.2 Nitrogen-Based Methods 18.2.1 Kjeldahl Method 18.2.1.1 Principle 18.2.1.2 Historical Background 18.2.1.3 General Procedures and Reactions 18.2.1.3.1 Sample Preparation 18.2.1.3.2 Digestion 18.2.1.3.3 Neutralization and Distillation 18.2.1.3.4 Titration 18.2.1.3.5 Calculations 18.2.1.4 Applications 18.2.2 Dumas (Nitrogen Combustion) Method 18.2.2.1 Principle 18.2.2.2 Procedure 18.2.2.3 Applications 18.3 Infrared Spectroscopy 18.3.1 Principle 18.3.2 Procedure 18.3.3 Applications 18.4 Colorimetric Methods 18.4.1 Dye-Binding Methods 18.4.1.1 Anionic Dye-Binding Method 18.4.1.1.1 Principle 18.4.1.1.2 Procedure 18.4.1.1.3 Applications 18.4.1.2 Bradford Dye-Binding Method 18.4.1.2.1 Principle 18.4.1.2.2 Procedure 18.4.1.2.3 Applications 18.4.2 Copper Ion-Based Methods 18.4.2.1 Biuret Method 18.4.2.1.1 Principle 18.4.2.1.2 Procedure 18.4.2.1.3 Applications 18.4.2.2 Lowry Method 18.4.2.2.1 Principle 18.4.2.2.2 Procedure 18.4.2.2.3 Applications 18.4.2.3 Bicinchoninic Acid Method 18.4.2.3.1 Principle 18.4.2.3.2 Procedure 18.4.2.3.3 Applications 18.5 Ultraviolet Absorption Methods for Proteins and Peptides 18.5.1 Ultraviolet 280 nm Absorption for Protein 18.5.1.1 Principle 18.5.1.2 Procedure 18.5.1.3 Applications 18.5.2 Peptide Measurement at 190–220 nm 18.6 Nonprotein Nitrogen Determination 18.6.1 Principle 18.6.2 Procedure 18.6.3 Applications 18.7 Comparison of Methods 18.8 Special Considerations 18.9 Summary 18.10 Study Questions 18.11 Practice Problems References 19. Carbohydrate Analysis 19.1 Introduction 19.2 Sample Preparation 19.2.1 General Information 19.2.2 Extraction and Cleanup for Determination of Mono- and Oligosaccharides 19.3 Total Carbohydrate: Phenol-Sulfuric Acid Method 19.3.1 Principle and Characteristics 19.3.2 Outline of Procedure 19.4 Mono- and Oligosaccharides 19.4.1 Total Reducing Sugars 19.4.1.1 Somogyi–Nelson Method 19.4.1.1.1 Principle 19.4.1.1.2 Outline of Procedure 19.4.1.2 Other Methods 19.4.2 Specific Analysis of Mono- and Oligosaccharides 19.4.2.1 High-Performance Liquid Chromatography 19.4.2.1.1 Overview 19.4.2.1.2 Anion-Exchange HPLC 19.4.2.1.3 Pulsed Electrochemical Detection 19.4.2.1.4 Other HPLC Methods 19.4.2.2 Gas Chromatography 19.4.2.2.1 Overview 19.4.2.2.2 Neutral Sugars: Outline of Procedure [31] 19.4.2.3 Enzymic Methods 19.4.2.3.1 Overview 19.4.2.3.2 Sample Preparation 19.4.2.3.3 Enzymic Determination of D-Glucose (Dextrose) 19.4.2.4 Capillary Electrophoresis 19.5 Polysaccharides 19.5.1 Starch 19.5.1.1 Total Starch 19.5.1.1.1 Principle and Procedure 19.5.1.1.2 Potential Limitations 19.5.2 Non-starch Polysaccharides (Hydrocolloids/Food Gums) 19.5.2.1 Overview 19.5.2.2 Hydrocolloid Content Determination 19.5.2.3 Pectin 19.5.2.3.1 Nature of Pectin 19.5.2.3.2 Pectin Content Determination 19.6 Dietary Fiber 19.6.1 Definition 19.6.2 Methods 19.6.2.1 Overview 19.6.2.2 Sample Preparation 19.6.2.3 Enzymic-Gravimetric Method 19.6.2.3.1 Total, Soluble, and Insoluble Dietary Fiber 19.6.2.3.2 Dietary Fiber Components as Defined by Codex Alimentarius 19.7 Physical Methods 19.7.1 Measurements of Sugar Concentrations in Solution 19.7.2 Measurement of Starch Pasting Behavior and Thermal Properties 19.7.2.1 Starch Pasting Properties 19.7.2.2 Starch Thermal Properties 19.7.3 Mass Spectrometry 19.7.4 Mid-Infrared/Fourier Transform Infrared (FTIR) Spectroscopy 19.7.5 Near-Infrared (NIR) Spectroscopy 19.8 Summary 19.9 Study Questions 19.10 Practice Problems References 20. Vitamin Analysis 20.1 Introduction 20.1.1 Definition and Importance 20.1.2 Importance of Analysis 20.1.3 Vitamin Units 20.1.4 Extraction Methods 20.1.5 Overview of Methods 20.2 Bioassay Methods 20.3 Microbiological Assays 20.3.1 Principle 20.3.2 Applications 20.3.3 Niacin 20.4 Chemical Methods 20.4.1 High-Performance Liquid Chromatography (HPLC) Methods 20.4.1.1 Overview 20.4.1.2 Vitamin A 20.4.1.3 Vitamin D 20.4.1.4 Vitamin E (Tocopherols and Tocotrienols) 20.4.2 Other Chemical Methods 20.4.2.1 Vitamin C 20.4.2.1.1 2,6-Dichloroindophenol (DCIP) Titrimetric Method 20.4.2.1.2 Microfluorometric Method 20.4.2.2 Thiamine (Vitamin B1) Thiochrome Fluorometric Method 20.4.2.3 Riboflavin (Vitamin B2) Fluorometric Method 20.5 Comparison of Methods 20.6 Summary 20.7 Study Questions 20.8 Practice Problems References 21. Traditional Methods for Mineral Analysis 21.1 Introduction 21.1.1 Importance of Minerals in the Diet 21.1.2 Minerals in Food Processing 21.2 Basic Considerations 21.2.1 Nature of Analyses 21.2.2 Sample Preparation 21.2.3 Interferences 21.3 Methods 21.3.1 EDTA Complexometric Titration 21.3.1.1 Background Information 21.3.1.2 Principle 21.3.1.3 Procedure: Hardness of Water Using EDTA Titration 21.3.1.4 Applications 21.3.2 Precipitation Titration 21.3.2.1 Principles 21.3.2.2 Procedures 21.3.2.2.1 Mohr Titration 21.3.2.2.2 Volhard Titration 21.3.2.3 Applications 21.3.3 Colorimetric Methods 21.3.3.1 Principles 21.3.3.2 Procedures: Determination of Phosphorus in Milk 21.3.3.3 Applications 21.3.4 Ion-Selective Electrodes 21.3.4.1 Background Information 21.3.4.2 Principle 21.3.4.3 General Methodology 21.3.4.4 Electrode Calibration and Determination of Concentration 21.3.4.5 Applications 21.4 Benchtop Rapid Analyzers for Salt 21.5 Comparison of Methods 21.6 Summary 21.7 Study Questions 21.8 Practice Problems References Part V. Chemical Characterization and Associated Assays 22 pH and Titratable Acidity 22.1 Introduction 22.2 Calculation and Conversion for Neutralization Reactions 22.2.1 Concentration Units 22.2.2 Equation for Neutralization and Dilution 22.3 pH 22.3.1 Acid–Base Equilibria 22.3.2 pH Meter 22.3.2.1 General Principles 22.3.2.2 Guidelines for the Use of pH Meter 22.4 Titratable Acidity 22.4.1 Overview and Principle 22.4.2 General Considerations 22.4.2.1 Titration Curves of Strong and Weak Acids 22.4.2.2 Potentiometric Titration 22.4.2.3 Indicators 22.4.3 Preparation of Reagents 22.4.3.1 Standard Alkali 22.4.3.2 Standard Acid 22.4.4 Sample Analysis 22.4.5 Calculation of Titratable Acidity 22.4.6 Acid Content in Food 22.4.7 Volatile Acidity 22.4.8 Other Methods 22.5 Summary 22.6 Study Questions 22.7 Practice Problems References 23. Fat Characterization 23.1 Introduction 23.1.1 Definitions and Classifications 23.1.2 Importance of Analyses 23.1.3 Lipid Content in Foods and Typical Values 23.2 General Considerations 23.2.1 Crude Fat/Oil Processing 23.2.2 Chemical Changes During Processing, Storage, and Use 23.2.2.1 Lipolysis 23.2.2.2 Lipid Oxidation 23.2.2.3 Frying Fats/Oils and Lipid Polymerization 23.2.3 Shelf-Life Determination 23.2.4 Sample Preparation 23.3 Physical Characterization 23.3.1 Refractive Index 23.3.1.1 Principle 23.3.1.2 Procedure 23.3.1.3 Applications 23.3.2 Melting Point 23.3.2.1 Principle 23.3.2.2 Applications 23.3.3 Smoke, Flash, and Fire Points 23.3.3.1 Principle 23.3.3.2 Procedure 23.3.3.3 Applications 23.3.4 Cold Test 23.3.4.1 Principle 23.3.4.2 Procedure 23.3.4.3 Applications 23.3.5 Cloud Point 23.3.5.1 Principle 23.3.5.2 Procedure 23.3.6 Color 23.3.6.1 Procedure 23.3.6.2 Applications 23.3.7 Solid Fat Content 23.3.7.1 Principle 23.3.7.2 Applications 23.3.8 Consistency and Spreadability 23.4 Chemical Characterization 23.4.1 Iodine Value 23.4.1.1 Principle 23.4.1.2 Procedure 23.4.1.3 Applications 23.4.2 Saponification Value 23.4.2.1 Principle 23.4.2.2 Procedure 23.4.2.3 Applications 23.4.3 Free Fatty Acids and Acid Value 23.4.3.1 Principle 23.4.3.2 Procedure 23.4.3.3 Applications 23.4.4 Conjugated Dienes 23.4.4.1 Principle 23.4.4.2 Procedure 23.4.4.3 Applications 23.4.5 Peroxide Value 23.4.5.1 Principle 23.4.5.2 Procedure 23.4.5.3 Applications 23.4.6 p-Anisidine Value and Totox Value 23.4.6.1 Principle 23.4.6.2 Procedure 23.4.6.3 Applications 23.4.7 Thiobarbituric Acid Reactive Substances 23.4.7.1 Principle 23.4.7.2 Procedure 23.4.7.3 Applications 23.4.8 Volatile Organic Compounds 23.4.8.1 Principle 23.4.8.2 Procedure 23.4.8.3 Applications 23.4.9 Total Polar Compounds 23.4.9.1 Principle 23.4.9.2 Procedure 23.4.9.3 Applications 23.4.10 Polymerized Triacylglycerols 23.5 Accelerated Stability Testing 23.5.1 Overview 23.5.2 Accelerated Shelf-Life Tests 23.5.2.1 Principle 23.5.2.2 Applications 23.5.3 Oil Stability Index 23.5.3.1 Principle 23.5.3.2 Applications 23.5.4 Oxygen ConsumptionTests 23.5.4.1 Principle 23.5.4.2 Applications 23.6 Lipid Fractions 23.6.1 Overview 23.6.2 Fatty Acids 23.6.2.1 Principle 23.6.2.2 Procedure 23.6.2.3 Applications 23.6.3 trans Isomer Fatty Acids 23.6.3.1 Principle 23.6.3.2 Procedure 23.6.3.3 Applications 23.6.4 Mono-, Di-, and Triacylglycerols 23.6.5 Cholesterol and Phytosterols 23.6.5.1 Principle 23.6.5.2 Procedure 23.6.5.3 Applications 23.6.6 Thin-Layer Chromatography of Lipid Fractions 23.6.6.1 Procedure 23.6.6.2 Applications 23.7 Summary 23.8 Study Questions 23.9 Practice Problems References 24. Protein Separation and Characterization Procedures 24.1 Introduction 24.2 Methods of Protein Separation and Isolation 24.2.1 Initial Considerations 24.2.2 Dry Fractionation 24.2.3 Separation Based on Differential Solubility 24.2.3.1 Principle 24.2.3.2 Procedures 24.2.3.2.1 pH-Assisted Solubilization and Precipitation 24.2.3.2.2 Salting-In and Salting-Out 24.2.3.2.3 Solvent Fractionation 24.2.3.2.4 Thermal Denaturation 24.2.4 Separation by Adsorption Chromatography 24.2.4.1 Principle 24.2.4.2 Procedures 24.2.4.2.1 Ion-Exchange Chromatography 24.2.4.2.2 Affinity Chromatography 24.2.4.2.3 Hydrophobic Interaction Chromatography 24.2.5 Separation by Size 24.2.5.1 Principle 24.2.5.2 Procedures 24.2.5.2.1 Dialysis 24.2.5.2.2 Membrane Processes 24.2.5.2.3 Size-Exclusion Chromatography 24.2.6 Separation by Electrophoresis 24.2.6.1 Polyacrylamide Gel Electrophoresis 24.2.6.1.1 Principle 24.2.6.1.2 Procedures 24.2.6.1.3 Applications 24.2.6.2 Isoelectric Focusing 24.2.6.2.1 Principle 24.2.6.2.2 Procedure 24.2.6.2.3 Applications 24.2.6.3 Capillary Electrophoresis 24.2.6.3.1 Principle 24.2.6.3.2 Procedure 24.2.6.3.3 Applications 24.3 Protein Characterization Procedures 24.3.1 Amino Acid Analysis 24.3.1.1 Principle 24.3.1.2 Procedures 24.3.1.3 Applications 24.3.2 Protein Nutritional Quality 24.3.2.1 Introduction 24.3.2.2 Protein Digestibility – Corrected Amino Acid Score 24.3.2.2.1 Principle 24.3.2.2.2 Procedure 24.3.2.2.3 Applications 24.3.2.3 Protein Efficiency Ratio 24.3.2.3.1 Principle 24.3.2.3.2 Procedure 24.3.2.3.3 Application 24.3.2.4 Other Protein Nutritional Quality Tests 24.3.2.4.1 Essential Amino Acid Index 24.3.2.4.2 In Vitro Protein Digestibility 24.3.2.4.3 Lysine Availability 24.3.3 Assessment of Protein Structural Properties 24.3.3.1 Introduction 24.3.3.2 Molecular Weight Distribution 24.3.3.3 Denaturation 24.3.3.4 Surface Properties 24.3.3.4.1 Surface Hydrophobicity 24.3.3.4.2 Surface Charge 24.3.4 Assessment of Protein Functional Properties 24.3.4.1 Introduction 24.3.4.2 Water Hydration/Binding Capacity and Viscosity 24.3.4.3 Dispersibility Index and Solubility 24.3.4.4 Oil Binding Capacity 24.3.4.5 Emulsification 24.3.4.6 Foaming 24.3.4.7 Protein Network Formation 24.3.4.7.1 Gelation and Water Holding Capacity 24.3.4.7.2 Dough Formation 24.3.4.7.3 Texturization 24.3.4.8 Applications of Testing for Protein Functionality 24.4 Summary 24.5 Study Questions 24.6 Practice Problems References 25. Determination of (Total) Phenolics and Antioxidant Capacity in Food and Ingredients 25.1 Introduction 25.2 Analysis of (Total) Phenolics 25.2.1 Sample Preparation 25.2.1.1 Extraction 25.2.1.2 Hydrolysis 25.2.2 Colorimetric Assays for Determination of “Total” Phenolics 25.2.2.1 Folin-Ciocalteu Assay 25.2.2.2 Fast Blue BB Assay 25.2.3 Chromatographic Methods 25.2.3.1 High-Performance Liquid Chromatography 25.2.3.2 Gas Chromatography 25.3 Antioxidant Capacity Assays 25.3.1 General Principles and Limitations of Antioxidant Capacity Assays 25.3.2 Hydrogen Atom Transfer (HAT) Assays 25.3.2.1 Oxygen Radical Absorbance Capacity (ORAC) Assay 25.3.3 Single Electron Transfer (SET) Assays 25.3.3.1 Trolox Equivalent Antioxidant Capacity (TEAC) Assay 25.3.3.2 2,2-Diphenyl-1-Picryhydrazyl Radical (DPPH) Assay 25.3.3.3 Ferric Reducing Antioxidant Power (FRAP) Assay 25.3.4 Assays Based on Oxidation of Lipids 25.4 Summary 25.5 Study Questions References 26. Application of Enzymes in Food Analysis 26.1 Introduction 26.2 Principles 26.2.1 Enzyme Kinetics 26.2.1.1 Overview 26.2.1.2 Michaelis-Menten Equation 26.2.1.3 Apparent Order of Simple Enzyme Reactions 26.2.1.4 Determination of KM and Vmax 26.2.2 Factors That Affect Enzyme Reaction Rate 26.2.2.1 Effect of Enzyme Concentration 26.2.2.2 Effect of Substrate Concentration 26.2.2.3 Environmental Effects 26.2.2.3.1 Effect of Temperature on Enzyme Activity 26.2.2.3.2 Effect of pH on Enzyme Activity 26.2.2.4 Activators and Inhibitors 26.2.2.4.1 Activators 26.2.2.4.2 Inhibitors 26.2.3 Methods of Measurement 26.2.3.1 Overview 26.2.3.2 Coupled Reactions 26.3 Applications 26.3.1 Substrate Assays 26.3.1.1 Sample Preparation 26.3.1.2 Total Change/Endpoint Methods 26.3.1.3 Specific Applications 26.3.1.3.1 Measurement of Sulfite 26.3.1.3.2 Colorimetric Determination of Glucose 26.3.1.3.3 Starch/Dextrin Content 26.3.1.3.4 Determination of D-Malic Acid in Apple Juice 26.3.2 Enzyme Activity Assays 26.3.2.1 Peroxidase Activity 26.3.2.2 Lipoxygenase 26.3.2.3 Phosphatase Assay 26.3.2.4 α-Amylase Activity 26.3.2.5 Rennet Activity 26.3.2.6 Pectinmethylesterease Activity 26.3.3 Biosensors/Immobilized Enzymes 26.3.4 Structural Analysis of Enzymes 26.4 Summary 26.5 Study Questions References 27. Immunoassays 27.1 Introduction 27.1.1 Definitions 27.1.2 Binding Between Antigen and Antibody 27.1.3 Types of Antibodies 27.2 Theory of Immunoassays 27.3 Solid-Phase Immunoassays 27.3.1 Overview 27.3.2 ELISA 27.3.2.1 Introduction 27.3.2.2 Direct Versus Indirect Detection 27.3.2.3 Noncompetitive Versus Competitive Immunoassay Variations 27.3.2.3.1 Noncompetitive ELISA 27.3.2.3.2 Competitive Immunoassays 27.3.3 Immunoblots 27.3.3.1 Western Blot 27.3.3.2 Dot Blot 27.3.4 Lateral Flow Strip Test 27.3.4.1 Overview 27.3.4.2 Procedure 27.3.4.3 Applications 27.4 Immunoaffinity Purification 27.5 Applications 27.6 Summary 27.7 Study Questions References 28. Determination of Oxygen Demand 28.1 Introduction 28.2 Methods 28.2.1 Biochemical Oxygen Demand (BOD) 28.2.1.1 Principle 28.2.1.2 Procedure 28.2.1.3 Applications and Limitations 28.2.2 Chemical Oxygen Demand (COD) 28.2.2.1 Principle 28.2.2.2 Procedure 28.2.2.3 Applications and Limitations 28.3 Comparison of BOD and COD Methods 28.4 Sampling and Handling Requirements 28.5 Summary 28.6 Study Questions 28.7 Practice Problems References Part VI. Analysis of Physical Properties of Foods 29. Rheological Principles for Food Analysis 29.1 Introduction 29.1.1 Rheology and the Food Industry 29.1.2 Rheological Methods in the Food Industry 29.1.3 Basic Assumptions for Fundamental Rheological Methods 29.2 Fundamentals of Rheology 29.2.1 Concepts of Stress, Strain, and (Shear) Strain Rate 29.2.2 Elastic and Shear Moduli 29.2.3 Viscosity Profiles 29.3 Standard Rheometry 29.3.1 Compression, Extension, and Torsion Analyses 29.3.1.1 Large-Strain Testing 29.3.1.1.1 Determining Stress, Strain, and Elastic Modulus (E) in Compression 29.3.1.1.2 Texture Profile Analysis 29.3.1.2 Fracture Testing 29.3.2 Rotational Viscometry 29.3.2.1 Fundamental Geometries for Steady Shear Measurements 29.3.2.2 Common Devices for Measuring Viscosity in the Food Industry 29.3.3 Oscillatory Rheometry 29.3.4 Novel Rheological Methods 29.3.4.1 Tribology 29.3.4.2 Extensional Viscosity 29.3.4.3 Large Amplitude Oscillatory Shear 29.4 Selecting Rheological Tests 29.4.1 Determining Required Information 29.4.2 Sample Considerations 29.4.3 Testing Considerations 29.4.4 Other Considerations 29.5 Summary 29.6 Glossary 29.7 Nomenclature 29.8 Study Questions References 30. Thermal Analysis 30.1 Introduction 30.2 Materials Science 30.2.1 Amorphous Structure 30.2.2 Crystalline Structure 30.2.3 Semi-crystalline Structure 30.2.4 Thermodynamic and Kinetic Properties 30.3 Principles and Methods 30.3.1 Thermogravimetric Analysis 30.3.1.1 Overview 30.3.1.2 Experimental Conditions 30.3.1.3 Common Measurements 30.3.2 Differential Scanning Calorimetry 30.3.2.1 Overview 30.3.2.2 Experimental Conditions 30.3.2.3 Common Measurements 30.3.3 Modulated Temperature DSC 30.3.3.1 Overview 30.3.3.2 Experimental Conditions 30.3.3.3 Common Measurements 30.4 Understanding the Effect of Structure on Physical Properties 30.4.1 Connecting Changes in Gelatin Structure as Probed by DSC to Its Physical Properties 30.4.2 Gelatin Lab or Home Experiment 30.5 Summary 30.6 Study Questions References 31. Color Analysis 31.1 Introduction 31.2 Physiological Basis of Color 31.3 Color Specification and Order Systems 31.3.1 Visual Systems: The Munsell Color System 31.3.2 Instrumental Systems: The CIE Color Specification Systems 31.3.3 The CIE Tristimulus System and the Tristimulus Values 31.3.4 The Hunter Lab and the CIELAB Color Spaces 31.4 Instrumental Measurement of Color 31.4.1 Colorimeters vs Spectrophotometers for Color Measurement 31.4.2 Reflection and Transmission Measurements 31.4.3 Advanced Optical Systems: Digital Imaging Techniques 31.5 Color Measurements in the Food Industry 31.5.1 Color Measurements as a Tool for Quality Control 31.5.2 Color Differences and Color Tolerances for Industrial Applications 31.5.3 Color Measurements to Monitor Shelf-Life 31.5.4 Practical Considerations for Sample Preparation and Presentation 31.6 Summary 31.7 Study Questions References 32. Food Microstructure Techniques 32.1 Introduction 32.2 Microscopy 32.2.1 Introduction 32.2.2 Light Microscopy 32.2.2.1 Introduction 32.2.2.2 Contrasting Modes 32.2.2.3 Fluorescence Microscopy 32.2.2.4 Histology 32.2.3 Electron Microscopy 32.2.4 Energy-Dispersive X-Ray Spectroscopy 32.2.5 Atomic Force Microscopy 32.3 Chemical Imaging 32.3.1 Introduction 32.3.2 Fourier Transform Infrared Microscopy 32.3.3 Confocal Raman Microscopy 32.3.4 Confocal Laser Scanning Microscopy 32.3.5 Hyperspectral Imaging 32.4 X-Ray Diffraction 32.5 Tomography 32.5.1 Introduction 32.5.2 X-Ray Computed Tomography 32.6 Case Studies 32.6.1 Fat Blends 32.6.2 Food Emulsions 32.7 Summary 32.8 Study Questions References Part VII. Analysis of Objectionable Matter and Constituents 33. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern 33.1 Introduction: Current and Emerging Food Hazards 33.2 Analytical Approach 33.2.1 Choice of Analytical Method 33.2.1.1 Qualitative or Semiquantitative Methods 33.2.1.2 Quantitative Methods 33.2.2 Sample Preparation 33.2.2.1 Introduction 33.2.2.2 Sample Homogenization 33.2.2.3 Extraction and Cleanup 33.2.2.3.1 Introduction 33.2.2.3.2 Solid-Phase Microextraction 33.2.2.3.3 QuEChERS 33.2.2.3.4 Energized-Dispersive Guided Extraction 33.2.2.3.5 Microwave-Assisted Solvent Extraction 33.2.2.4 Derivatization 33.3 Pesticide Residue Analysis 33.3.1 Introduction 33.3.2 Types of Analytical Methods 33.3.3 Analytical Techniques Used for the Detection, Identification, and/or Quantification 33.3.3.1 Biochemical Techniques 33.3.3.2 Chromatographic Techniques 33.3.3.2.1 Thin-Layer Chromatography 33.3.3.2.2 Gas Chromatography 33.3.3.2.3 High-Performance Liquid Chromatography 33.3.3.3 Mass Spectrometry Detection 33.3.3.3.1 Gas Chromatography-Mass Spectrometry 33.3.3.3.2 High-Performance Liquid Chromatography-Mass Spectrometry 33.4 Mycotoxin Analysis 33.4.1 Introduction 33.4.2 Sampling 33.4.3 Detection and Determination 33.4.3.1 Rapid Methods of Detection 33.4.3.1.1 TLC 33.4.3.1.2 Immunoassays 33.4.3.2 Quantitative and Confirmative Chemical Methods 33.4.3.2.1 HPLC 33.4.3.2.2 GC 33.4.3.2.3 Capillary Electrophoresis 33.4.3.3 Other Methods of Analysis 33.5 Antibiotic Residue Analysis 33.5.1 Introduction 33.5.2 Detection and Determination 33.5.2.1 Screening Methods 33.5.2.2 Determinative and Confirmatory Methods 33.6 Analysis of GMOs 33.6.1 Introduction 33.6.2 DNA Methods 33.6.2.1 DNA Extraction 33.6.2.2 PCR Amplification 33.6.2.3 DNA Analysis 33.6.3 Protein Methods 33.7 Allergen Analysis 33.7.1 Introduction 33.7.2 Protein Methods 33.7.2.1 General Considerations 33.7.2.2 Protein-Based Analytical Techniques 33.7.3 DNA Methods 33.8 Analysis of Other Chemical Contaminants and Undesirable Constituents 33.8.1 Introduction 33.8.2 Sulfites 33.8.3 Nitrates/Nitrites 33.9 Summary 33.10 Study Questions References 34. Analysis for Extraneous Matter 34.1 Introduction 34.1.1 Federal Food, Drug, and Cosmetic Act 34.1.2 Good Manufacturing Practices 34.1.3 Defect Action Levels 34.1.4 Purposes of Analyses 34.2 General Considerations 34.2.1 Definition of Terms 34.2.2 Diagnostic Characteristics of Filth 34.3 Official and Approved Methods 34.4 Basic Analysis 34.4.1 Sieving Method 34.4.2 Sedimentation Method 34.4.3 Flotation Methods 34.4.3.1 Cracking-Flotation Method 34.4.3.2 Light Filth Flotation Method 34.4.4 Subjectivity of Methods 34.5 Other Techniques 34.5.1 Overview 34.5.2 X-Ray Radiography 34.5.3 X-Ray Microtomography 34.5.4 Electrical Conductance Method 34.5.5 Olfactory-Based Methods 34.5.5.1 Solid-Phase Microextraction (SPME) 34.5.5.2 Electronic Nose (E-nose) 34.5.6 Impact-Acoustic Emission 34.5.7 Microscopy Techniques 34.5.8 Near-Infrared Spectroscopy 34.5.9 Artificial Intelligence-Based Techniques 34.5.10 Molecular-Based Methods 34.5.11 Enzyme-Linked Immunosorbent Assays 34.6 Comparison of Methods 34.7 Isolation Principles Applied to Food Processing 34.8 Summary 34.9 Study Questions References 35. Food Forensic Investigation 35.1 Introduction 35.2 Typical/Atypical Issues Requiring Forensic Analysis 35.2.1 Foreign Material Contamination 35.2.2 Food Authenticity and Adulteration 35.3 Essential Elements of Food Forensic Teams 35.3.1 Nature of Food Forensic Teams 35.3.2 Planning and Design 35.3.3 Documentation 35.3.4 Quality Assurance and Quality Control 35.3.5 Sampling and Logistics 35.4 Ask Questions Before Analysis Begins 35.5 Analyzing “Problem Samples” 35.5.1 Foreign Material Contamination 35.5.1.1 Introduction 35.5.1.2 Chemical Composition 35.5.1.3 Elemental Composition 35.5.1.4 Physical and Structural Identification 35.5.2 Off-Flavors and Taints 35.5.2.1 Strategy and Supportive Examples 35.5.2.2 Off-Odors and Taint Determination 35.6 Identifying the What, Where, When, and How of an Issue 35.7 Interpreting and Reporting Data 35.8 Summary 35.9 Study Questions References Index