دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Oscar Castillo. Patricia Melin
سری: Studies in Computational Intelligence, 1050
ISBN (شابک) : 3031082656, 9783031082658
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 470
[471]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دیدگاههای جدید در طراحی سیستم هوشمند ترکیبی مبتنی بر منطق فازی، شبکههای عصبی و فراابتکاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این کتاب، تحولات اخیر در منطق فازی، شبکه های عصبی و
الگوریتم های بهینه سازی و همچنین ترکیبات ترکیبی آنها ارائه شده
است. علاوه بر این، روشهای فوق در زمینههایی مانند کنترل هوشمند
و رباتیک، تشخیص الگو، تشخیص پزشکی، پیشبینی سریهای زمانی و
بهینهسازی مسائل پیچیده اعمال میشوند. این کتاب شامل مجموعهای
از مقالات متمرکز بر سیستمهای هوشمند ترکیبی مبتنی بر تکنیکهای
محاسباتی نرم است. مقالاتی با موضوع اصلی منطق فازی نوع 1 و نوع 2
وجود دارد که اساساً شامل مقالاتی است که مفاهیم و الگوریتم های
جدیدی را بر اساس منطق فازی نوع 1 و نوع 2 و کاربردهای آنها
پیشنهاد می کند. همچنین مقالاتی وجود دارد که مفاهیم نظری و
کاربردهای فراابتکاری را در حوزه های مختلف ارائه می دهند. گروه
دیگری از مقالات کاربردهای متنوع منطق فازی، شبکه های عصبی و
سیستم های هوشمند ترکیبی را در مسائل پزشکی توصیف می کنند. همچنین
مقالاتی وجود دارد که تئوری و عملی شبکه های عصبی را در حوزه های
مختلف کاربردی ارائه می کنند. علاوه بر این، مقالاتی وجود دارد که
تئوری و عمل بهینهسازی و الگوریتمهای تکاملی را در حوزههای
مختلف کاربردی ارائه میکنند. در نهایت، مقالاتی وجود دارد که
کاربردهای منطق فازی، شبکههای عصبی و فراابتکاری را در مسائل
شناسایی و طبقهبندی الگو توصیف میکنند.
In this book, recent developments on fuzzy logic, neural
networks and optimization algorithms, as well as their hybrid
combinations, are presented. In addition, the above-mentioned
methods are applied to areas such as, intelligent control and
robotics, pattern recognition, medical diagnosis, time series
prediction and optimization of complex problems. The book
contains a collection of papers focused on hybrid intelligent
systems based on soft computing techniques. There are some
papers with the main theme of type-1 and type-2 fuzzy logic,
which basically consists of papers that propose new concepts
and algorithms based on type-1 and type-2 fuzzy logic and their
applications. There also some papers that offer theoretical
concepts and applications of meta-heuristics in different
areas. Another group of papers describe diverse applications of
fuzzy logic, neural networks and hybrid intelligent systems in
medical problems. There are also some papers that present
theory and practice of neural networks in different areas of
application. In addition, there are papers that present theory
and practice of optimization and evolutionary algorithms in
different areas of application. Finally, there are some papers
describing applications of fuzzy logic, neural networks and
meta-heuristics in pattern recognition and classification
problems.
Preface About This Book Contents Neural Networks Automated Medical Diagnosis and Classification of Skin Diseases Using Efficinetnet-B0 Convolutional Neural Network 1 Introduction 2 Related Work 3 Methodology 3.1 EfficientNet-B0 3.2 ResNet50 3.3 CNN 3.4 Dataset 3.5 Experimental Setup 4 Results and Discussion 5 Limitation of the Study 6 Conclusion and Future Scope References Modular Approach for Neural Networks in Medical Image Classification with Enhanced Fuzzy Integration 1 Introduction 1.1 Medical Images 1.2 Medical Image Classification Using Neural Networks 1.3 Fuzzy Logic Combined with Modular Neural Networks 2 Proposed Method 3 Methodology 4 Results and Discussion 5 Conclusions References Clustering and Prediction of Time Series for Traffic Accidents Using a Nested Layered Artificial Neural Network Model 1 Introduction 2 Case Study 3 Methodology 4 Experiments and Results 5 Conclusions References Ensemble Recurrent Neural Networks and Their Optimization by Particle Swarm for Complex Time Series Prediction 1 Introduction 2 Problem Statement and Proposed Method 2.1 Description of the Particle Swarm Optimization Applied to Recurrent Neural Network 2.2 Data Base 2.3 Description of Type-1 and IT2FS 3 Simulation Results 4 Conclusions References Filter Estimation in a Convolutional Neural Network with Type‐2 Fuzzy Systems and a Fuzzy Gravitational Search Algorithm 1 Introduction 2 Literature Review 2.1 Convolutional Neural Networks 2.2 Type-2 Fuzzy Logic System 3 Proposed Method 4 Results and Discussion 5 Conclusions References Optimization Artificial Fish Swarm Algorithm for the Optimization of a Benchmark Set of Functions 1 Introduction 2 Related Works 3 Artificial Fish Swarm Algorithm 4 Benchmark Sets of Functions 5 Experimental Results 6 Analysis of the Parameters in AFSA 7 Comparison with Others Metaheuristics 8 Conclusions References Hierarchical Logistics Methodology for the Routing Planning of the Package Delivery Problem 1 Introduction 2 Problem Definition 3 Hierarchical Logistics Methodology 3.1 Phase 1: Clustering by FCM 3.2 Phase2: Optimization by ACO 4 Computational Experiment 5 Conclusions References A Novel Distributed Nature-Inspired Algorithm for Solving Optimization Problems 1 Introduction 2 Proposal 2.1 Birth 2.2 Growth 2.3 Reproduction 2.4 Death 3 Experiments 3.1 Experimental Setup 3.2 Experiment Configuration 3.3 Experiment Results 4 Discussion 5 Conclusions References Evaluation and Comparison of Brute-Force Search and Constrained Optimization Algorithms to Solve the N-Queens Problem 1 Introduction 2 Related Work 3 Mathematical Models 3.1 Mathematical Model No. 1 3.2 Mathematical Model No. 2 4 N-Queens Problem Solution Algorithms 4.1 Backtracking Algorithm 4.2 Branch and Bound Algorithm 4.3 Linear Programming Algorithm 5 Experiments and Results 5.1 Experiment 1: Backtracking 5.2 Experiment 2: Branch and Bound 5.3 Experiment 3: Linear Programming 6 Conclusions and Future Work References Performance Comparative Between Single and Multi-objective Algorithms for the Capacitated Vehicle Routing Problem 1 Introduction 2 Important Concepts 2.1 Continuous Optimization 2.2 Multi-objective Optimization 2.3 Multi-objective Genetic Algorithms 2.4 Nsga-Ii 2.5 Wasfga 2.6 Library 3 Mono-objective Approach 3.1 Class’s Description 3.2 Restrictions 4 Methodology 5 Experiments 6 Results 7 Multi-objective Approach 7.1 Fitness Functions 7.2 Methodology 7.3 Results 8 Conclusions References Fuzzy Logic Optimization of a Fuzzy Classifier for Obtaining the Blood Pressure Levels Using the Ant Lion Optimizer 1 Introduction 2 Literature Review 2.1 Ant Lion Optimizer 2.2 Type-1 Fuzzy System 2.3 Blood Pressure and Hypertension 3 Proposed Method 4 Results 5 Conclusions References Optimization of Fuzzy-Control Parameters for Path Tracking of a Mobile Robot Using Distributed Genetic Algorithms 1 Introduction 2 Proposed Method 2.1 Distributed GA 2.2 Membership Function Optimization 2.3 Four Parameters Configuration 2.4 Nine Parameters Configuration 2.5 18 Parameter Configuration 2.6 Implementation 3 Experiments and Results 3.1 Fuzzy Control 3.2 GA Setup 4 Conclusions References A New Fuzzy Approach to Dynamic Adaptation of the Marine Predator Algorithm Parameters in the Optimization of Fuzzy Controllers for Autonomous Mobile Robots 1 Introduction 2 Fuzzy Logic and Marine Predators Algorithm 2.1 Marine Predator Algorithm 2.2 MPA Formulation 2.3 Fuzzy Marine Predator Algorithm (FMPA) 3 Fuzzy Logic Systems 4 Study Cases 4.1 Case 1: Benchmark CEC-2017 Functions 4.2 Case 2: Optimization of Fuzzy Controllers 5 Results 5.1 Case 1 Results: Benchmark CEC-2017 Functions 5.2 Case 2: Dynamic Adjustment of Fuzzy Controller Parameters 5.3 Statistical Comparison 6 Conclusions References Evaluation of Times and Best Solutions of MFO, LSA and PSO Using Parallel Computing, Fuzzy Logic Systems and Migration Blocks Together to Evaluate Benchmark Functions 1 Introduction 2 Particle Swarm Optimization (PSO) 3 Moth Flame Optimization (MFO) 4 Lightning Search Algorithm (LSA) 5 Parallel MFO, LSA and PSO Algorithms with Fuzzy Systems and Migration 6 Fuzzy Logic System 7 Experiments 7.1 Experimental Results with PSO 8 Conclusions References Fuzzy Dynamic Parameter Adaptation in the Mayfly Algorithm: Preliminary Tests for a Parameter Variation Study 1 Introduction 2 Theoretical Framework 3 Proposed Method 4 Parameter Impact Study 5 Results 6 Conclusions References Optimization: Theory and Applications Symmetric-Approximation Energy-Based Estimation of Distribution (SEED) Algorithm for Solving Continuous High-Dimensional Global Optimization Problems 1 Introduction 2 Background 2.1 Continuous Global Optimization Problems. 2.2 Symmetric-Approximation Energy-Based Estimation of Distribution (SEED) 2.3 Differential Evolution 2.4 Particle Swarm Optimization 3 Experimental Design 4 Results 4.1 Page’s Trend Test Statistical Analysis 5 Conclusions References Optimization Models and Methods for Bin Packing Problems: A Case Study on Solving 1D-BPP 1 Introduction 2 The Bin Packing Problems 2.1 The One-Dimensional Bin Packing Problem and Variants 2.2 Multiobjective Bin Packing Problem 2.3 Dynamic Bin Packing 3 Related Works 4 Case Study: State-of-the-Art Solution Methods for 1D-BPP 4.1 Grouping Genetic Algorithm with Controlled Gene Transmission 4.2 Consistent Neighborhood Search for One-Dimensional Bin Packing 5 Design of GGA-CGT-II as an Extension of GGA-CGT 5.1 Design of Strategies and Analysis of Their Impact on Performance 5.2 Method to Calculate Different Lower Bounds 5.3 Instance Reduction Method to Simplify the Problem 6 Experimentations and Results with GGA-CGT-II 6.1 Instances for 1D-Bin Packing 6.2 Experiment 1: Calculation of Different Lower Bounds 6.3 Experiment 2: The Proposed Methods Together (GGA-CGT-II) 7 Conclusions and Future Work References CMA Evolution Strategy Applied to Optimize Chemical Molecular Clusters MxNz (x + y ≤ 5; M = N or M ≤ N) 1 Introduction 2 Potential Energy Surface 3 Covariance Matrix Adaptation—Evolution Strategy 4 Experiments 5 Results 6 Conclusions and Future Work References Specialized Crossover Operator for the Differential Evolution Algorithm Applied to a Car Sequencing Problem with Constraint Smoothing 1 Introduction 2 Differential Evolution with Specialized Chromosome Repairer Algorithm (DECR-s) 3 Specialized Crossover Operator 3.1 Specialized Crossover Operator for Chromosome a (Classes) 3.2 Specialized Crossover Operator for Chromosome B (Color) 4 Experiment Design 5 Results 5.1 Results Per Case of the Crossover Operator 5.2 Statistical Analysis of Cases 6 Conclusion References A Brave New Algorithm to Maintain the Exploration/Exploitation Balance 1 Introduction 2 State of the Art 3 Algorithm's Nature 4 Implementation 5 Experimental Results 5.1 Diversity Analysis 5.2 Diversity in Brave New Algorithm 5.3 Diversity on A Basic Genetic Algorithm 6 Discussion and Conclusions References A New Optimization Method Based on the Lotka-Volterra System Equations 1 Introduction 2 Optimization 3 Lotka-Volterra System Equations 4 Proposed Method 5 Results 6 Conclusions References Hybrid Intelligent Systems A Comparison of Replacement Operators in Heuristics for CSP Problems 1 Introduction 2 Background 2.1 Constraint Satisfaction Problems 2.2 Heuristics 2.3 Acceptance Criteria 3 Methodology 4 Results 4.1 Graph Coloring 4.2 Capacitated Vehicle Routing Problem 5 Discussion and Future Work References Synchronisms Using Reinforcement Learning as an Heuristic 1 Introduction 2 Background 2.1 Synchronisms 2.2 Agents 2.3 Machine Learning 2.4 Deep Learning 2.5 Reinforcement Learning 2.6 Q-Learning 3 Related Work 3.1 Most Common Methods of Deep Reinforcement Learning 3.2 Real Life Applications of Deep Reinforcement Learning 4 Using Synchronisms as an Heuristic for RL 4.1 RL Model Using Gradient Descent 4.2 Agent Learning Model 4.3 Keen Eye 5 Study Case: Cartpole 5.1 Defining the Environment 5.2 Defining the Agents 6 Results and Discussions 6.1 Comparing Both Models Using Reliability Metrics 7 Conclusions and Future Work 7.1 Future Work References A Mathematical Deduction of Variational Minimum Distance in Gaussian Space and Its Possible Application to Artificial Intelligence 1 Introduction 2 Methodology 2.1 Fisher Information Metric 2.2 Gaussian Arc Length 2.3 Variational Minimum Distance in Gaussian Space 3 Connection Between UMDAc and the Minimum Variational Distance 3.1 Univariate Marginal Distribution Algoritm 3.2 Minimum Distance in Gaussian UMDAc 4 Experimental Setup 4.1 Fitness Functions and Parameter Configuration 4.2 Experimental Results 4.3 Resulting Mathematical Model 5 Conclusions References A Model for Learning Cause-Effect Relationships in Bayesian Networks 1 Introduction 2 Rescorla-Wagner Model: Cognitive Psychology 3 Causal Bayesian Networks: Artificial Intelligent 4 The Algorithm CBN-RW 4.1 Information Measures from Hypothesis Tests 4.2 Package ‘Ndl’ 4.3 Description of the CBN-RW Algorithm 5 Selection of Experimental Datasets 6 Results 7 Conclusions References Eureka-Universe: A Business Analytics and Business Intelligence System 1 Introduction 2 Background 2.1 Knowledge Discovery 2.2 Fuzzy Logic 2.3 Compensatory Fuzzy Logic 2.4 Archimedean Compensatory Fuzzy Logic 2.5 Genetic Algorithms 2.6 Fuzzy Inference 2.7 Fuzzy Interpretability 3 Eureka-Universe 3.1 Architecture 3.2 Scientific Core 3.3 Project Manager 3.4 Task Manager 4 Case of Study 5 Conclusions References Neural Networks and Learning Extension of Windowing as a Learning Technique in Artificial Noisy Domains 1 Introduction 2 Noise Modeling 3 Case Study 3.1 Data Generation 3.2 Inductive Algorithms 3.3 Methodology 4 Results 5 Conclusions References Why Rectified Linear Activation Functions? Why Max-Pooling? A Possible Explanation 1 Formulation of the Problem: An Explanation is Needed 2 Why Rectified Linear Neurons: Our Explanation 3 Why Max-pooling 4 Which Fuzzy Operations? References Localized Learning: A Possible Alternative to Current Deep Learning Techniques 1 Formulation of the Problem 2 Why Neural Networks: A Theoretical Explanation 3 Need to Go Beyond Traditional Neural Networks and Deep Learning 4 Beyond Deep Learning, Towards Localization References What is a Reasonable Way to Make Predictions? 1 Formulation of the Problem 1.1 Making Predictions is Important 1.2 At First Glance, the Answer to These Questions is Straightforward 1.3 Situation is Not so Simple 1.4 This Should be Decided by an Experiment 2 Analysis of the Problem on a Simplified Case 2.1 Simplified Case: A Description 2.2 Case Study 2.3 Surprising Conclusion 2.4 What We Discuss in this Paper 3 General Case 3.1 Let us Describe the Situation in Precise Terms 3.2 Prediction Rule Must be Fair 3.3 Meta-Analysis: Using Prediction Rule to Select Prediction Rule 3.4 Induction Versus Anti-induction Revisited 3.5 General Result 4 Rules Must be Falsifiable 4.1 An Example Where a Reasonable Prediction Rule is Inconsistent 4.2 A Problem with Simple Induction 5 Conclusions and Future Work 5.1 Predictions: Naive Idea 5.2 What We Show: Situation is More Complex That it May Appear 5.3 Future Work References