ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب New Insights into Structural Interpretation and Modelling (Geological Society Special Publication No. 212)

دانلود کتاب بینش جدید در مورد تفسیر ساختاری و مدل سازی (انتشار ویژه انجمن زمین شناسی شماره 212)

New Insights into Structural Interpretation and Modelling (Geological Society Special Publication No. 212)

مشخصات کتاب

New Insights into Structural Interpretation and Modelling (Geological Society Special Publication No. 212)

دسته بندی: زمين شناسي
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1862391335, 9781423731009 
ناشر:  
سال نشر: 2003 
تعداد صفحات: 340 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب New Insights into Structural Interpretation and Modelling (Geological Society Special Publication No. 212) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بینش جدید در مورد تفسیر ساختاری و مدل سازی (انتشار ویژه انجمن زمین شناسی شماره 212) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بینش جدید در مورد تفسیر ساختاری و مدل سازی (انتشار ویژه انجمن زمین شناسی شماره 212)

این عنوان از کنفرانس انجمن زمین شناسی لندن به همین نام برخاسته است. از زمان انتشار نسخه قبلی این کتاب (بینش‌های مدرن در تفسیر ساختاری، اعتبارسنجی و مدل‌سازی، SP99، 1996، ویرایش شده توسط Buchanan & Nieuwland) پیشرفت زیادی حاصل شده است. این در درجه اول به لطف افزایش مداوم سرعت محاسبات و ظرفیت حافظه رایانه است که به طور مستقیم یا غیرمستقیم بر همه زمینه‌ها در تفسیر سازه، لرزه‌شناسی و مدل‌سازی تأثیر مثبت گذاشته است. بینش های جدید در تفسیر و مدل سازی ساختاری، یک نمای کلی متعادل از آنچه عنوان وعده می دهد ارائه می دهد. این کتاب به‌عنوان کتابی در نظر گرفته شده است که با انتخاب گسترده‌ای از موضوعات از مطالعات کلاسیک مبتنی بر میدان تا مدل‌سازی عددی و آنالوگ پیشرفته، به متخصصان با تجربه و همچنین دانشجویان پیشرفته‌تر در علوم زمین خدمت می‌کند. رهبران حوزه های خود برخی از فصل ها را نوشته اند، در حالی که نویسندگان جوان با نگاهی تازه و ایده های جدید، فصل های دیگر را نوشته اند. همچنین موجود است: آمار در آتشفشان شناسی - ISBN 1862392080 حرکت سیالات در مجراهای آتشفشانی: منبع سیگنال های لرزه ای و صوتی - انتشار ویژه شماره 307 - ISBN 1862392625 انجمن زمین شناسی لندن قدیمی ترین انجمن زمین شناسی لندن است که در سال 1807 تأسیس شد. جهان، و یکی از بزرگترین ناشران در علوم زمین است. انجمن طیف گسترده ای از عناوین با داوری با کیفیت بالا را برای دانشگاهیان و متخصصان فعال در علوم زمین منتشر می کند و به دلیل کیفیت کار خود از شهرت بین المللی رشک برانگیزی برخوردار است. بسیاری از زمینه هایی که ما در آنها منتشر می کنیم عبارتند از: - زمین شناسی نفت - زمین ساخت، زمین شناسی ساختاری و ژئودینامیک - چینه شناسی، رسوب شناسی و دیرینه شناسی - آتشفشان شناسی، مطالعات ماگمایی و ژئوشیمی - سنجش از دور - تاریخچه زمین شناسی - راهنمای زمین شناسی منطقه ای


توضیحاتی درمورد کتاب به خارجی

This title has arisen from the Geological Society of London conference of the same name. Since the publication of the predecessor of this book (Modern insights into structural interpretation, validation and modelling, SP99, 1996, edited by Buchanan & Nieuwland) much progress has been made. This has been primarily thanks to the continuously increasing computing speed and computer memory capacity, which has positively affected all fields in structural interpretation, seismics and modelling, directly or indirectly. New insights in structural interpretation and modelling, presents a balanced overview of what the title promises. It is intended as a book that will serve the experienced professional as well as more advanced students in earth sciences, with a broad selection of topics ranging from classical field based studies to state of the art analogue and numerical modelling. The leaders of their fields have written some of the chapters, whereas younger authors with a fresh outlook and new ideas have written other chapters. Also available: Statistics in Volcanology - ISBN 1862392080 Fluid Motions in Volcanic Conduits: A Source of Seismic and Acoustic Signals - Special Publication no 307 - ISBN 1862392625 The Geological Society of LondonFounded in 1807, the Geological Society of London is the oldest geological society in the world, and one of the largest publishers in the Earth sciences.The Society publishes a wide range of high-quality peer-reviewed titles for academics and professionals working in the geosciences, and enjoys an enviable international reputation for the quality of its work.The many areas in which we publish in include:-Petroleum geology-Tectonics, structural geology and geodynamics-Stratigraphy, sedimentology and paleontology-Volcanology, magmatic studies and geochemistry-Remote sensing-History of geology-Regional geology guides



فهرست مطالب

Contents......Page 6
Introduction: new insights into structural interpretation and modelling......Page 8
Geometry, kinematics and scaling properties of faults and fractures as tools for modelling geofluid reservoirs: examples from the Apennines, Italy......Page 14
Fig. 1. Simplified geological maps showing the locations of field study areas .........Page 15
Fig. 2. Geological sketch map of the Colfiorito-Norcia areas (modified after Cello et al. 2001a).......Page 16
Fig. 3. Fault volume characteristics: (a) fault zone components; (b) hydraulic properties of conduit-type .........Page 17
Fig. 5. (a) Fracture connectivity diagram (type I – isolated; type II – singly connected; type III – multiply .........Page 18
Fig. 6. Geological map of Monte Alpi, showing scan area sites (after .........Page 19
Fig. 7. Rosette diagrams showing the statistical distribution of (a) fractures, (b) aerial photograph .........Page 20
Fig. 9. Fracture frequency diagram. The diagram was constructed by integrating all .........Page 21
Fig. 10. Geological map of the Monte San Vicino area, showing the .........Page 22
Fig. 11. Spatial distribution of discontinuity surfaces associated with the main faults .........Page 23
Fig. 14. Permeability structure of some mesoscopic fault zones in the Monte San Vicino area.......Page 24
Fig. 15. Orientation data, cumulative length, spacing, and box-counting curves from a .........Page 25
Fig. 17. Fracture connectivity diagram relative to two different lithologies. The analysed .........Page 26
Fig. 18. Length–displacement profiles across mesoscopic faults in the Monte San Vicino area.......Page 27
Fig. 19. Length–displacement profiles across the active faults of the (a) Norcia and .........Page 28
An improved regional structural model of the Upper Carboniferous of the Cleaver Bank High based on 3D seismic interpretation......Page 30
Fig. 1. Schematic structural framework during the Early Carboniferous (from Besly 1998), .........Page 32
Fig. 2. Simplified Early Carboniferous tectonic map illustrating the continental expulsion of .........Page 33
Fig. 3. The North Sea–Baltic block was pushed back into its former .........Page 34
Fig. 4. Type-log for the Upper Carboniferous stratigraphy of the Dutch Cleaver .........Page 36
Fig. 5. Westphalian seismic facies.......Page 37
Fig. 6. Fault map with the faults observed on 3D seismic surveys .........Page 38
Fig. 8. East–west section through block K1 showing the position of an .........Page 39
Fig. 9. Synthesis of the tectonic observations and interpretations of the dominant shear zones.......Page 40
Building and unfaulting fault–horizon networks......Page 46
Fig. 1. Generalized flow diagram for building and unfaulting fault–horizon networks. First, .........Page 47
Fig. 2. Building a simple fault–horizon network, first data set. (a) 3D perspective .........Page 49
Fig. 3. Building branch fault intersections, second data set. Depth interval c. .........Page 50
Fig. 5. Fault slip profiles along faultcut of Figure 2e–i. The line .........Page 51
Fig. 7. The slip-extrapolation unfaulting method. The starting point of the method .........Page 52
Fig. 8. Unfaulting the first data set. Unfaulting extrapolation gradient 2%. Three .........Page 53
Fig. 9. Map view of horizon H5 in the first data set; .........Page 54
Fig. 11. The slip-extrapolation function. The gradient of the extrapolation function is .........Page 55
Fig. 12. Unfaulting faults sequentially in the second data set. Unfaulting displacements .........Page 57
Fig. 14. 'Swallow' fault slip decomposition. Same 3D perspective as Figure 13. .........Page 58
Fig. 15. Unfaulting horizon B2 in the second data set. Perspective view .........Page 59
Fig. 16. Unfaulting strain and displacement in the second data set. Extrapolation .........Page 60
Fig. 17. Two details of unfaulting displacement vectors. See Figure 16b for .........Page 61
Finite strain variations along strike in mountain belts......Page 66
Fig. 1. Images of the Andes mountains and the Jura mountains. (a) Digital .........Page 67
Fig. 2. Structural units used for the block mosaic restoration of the .........Page 68
Fig. 3. (a) Triangular decomposition of the Andean displacement field. Elements are shown .........Page 69
Fig. 4. The relationship between block mosaic restoration and 'continuous' displacement as .........Page 70
Fig. 5. The finite strain field of the Central Andes. (a) Calculated strains .........Page 73
Fig. 7. The strain axis pattern produced from the restoration of the .........Page 74
Fig. 9. The relationship between boundary displacements (nodal displacements) and predicted slip .........Page 77
Fig. A1. (a) An initial triangle ((0,0) (0,1) (1,0)) transformed onto a new .........Page 78
Fig. A2. Functions f, g and h as defined by the nodal .........Page 80
Table 1. Strain parameters for the Central Andes......Page 72
Table 2. Strain parameters for the Jura mountains......Page 76
New aspects of tectonic stress inversion with reference to the TENSOR program......Page 82
Fig. 1. Separation of an artificial data set into subsets using an .........Page 86
Fig. 2. Separation of a fault-slip data set (b157) into two subsets .........Page 87
Fig. 3. Principle of the Right Dihedron method (Schmidt projections, lower hemisphere). .........Page 88
Fig. 4. Uncertainty in determination of stress axes with the Right Dihedron .........Page 89
Fig. 5. Relation between stress ratios R used to produce models of .........Page 90
Fig. 6. Use of the Counting Deviation CD to filter the data. .........Page 91
Fig. 7. Principle of the 4D Rotational Optimization. The stress tensor is .........Page 95
Fig. 8. Example of progressive kinematic separation and stress tensor optimization on .........Page 96
Fig. 9. Example of progressive kinematic separation and stress tensor optimization for .........Page 102
Fig. 10. Example of stress analysis of a synthetic data set produced .........Page 105
Table 1. Value of the parameters used for estimating the quality of .........Page 99
Table 2. Threshold values as defined in Sperner et al. (2003) for .........Page 100
Table 3. Value of the parameters used for estimating the quality of .........Page 104
Tectonic stress in the Earth's crust: advances in the World Stress Map project......Page 108
Table 1. Distribution of data types in the WSM database......Page 110
Table 2. Quality ranking scheme for fault-slip data (GFI)......Page 111
Fig. 3. (a) Distribution of four-arm caliper data (Pad-1,3 azimuth: dark grey; Pad-2,4 .........Page 113
Table 4. Quality ranking scheme for borehole breakouts (BO, BOC, BOT)......Page 114
Table 5. Quality ranking scheme for drilling induced fractures (DIF)......Page 115
Table 6. Quality ranking scheme for borehole slotter (BS) and overcoring (OC) data......Page 116
Fig. 7. Tectonic map of the eastern Mediterranean region. Lateral extrusion of .........Page 117
Fig. 8. Velocity and stress data for the eastern Mediterranean region. GPS .........Page 118
Fig. 9. Stability of underground openings due to their orientation relative to .........Page 120
Fig. 10. Stress-controlled flow anisotropy (modified after Bell 1996). Due to the .........Page 121
Table 3. Additional constraints for the quality ranking of GFM and GFS data......Page 112
A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis......Page 124
Fig. 1. Geometry of Band-1 and Band-2 in the shear-wave window in .........Page 126
Fig. 2. Typical examples of seismograms of local earthquakes recorded within the .........Page 129
Fig. 3. A comparison of visual and automatic techniques for measuring time-delays. .........Page 132
Fig. 4. Map of Iceland, showing the seismic network and analyses of .........Page 133
Fig. 5. Examples of shear-wave splitting in sequences of seismograms. Upper diagrams .........Page 134
Table 1. Earthquakes in figures (i) Earthquakes for seismograms in Figure 2......Page 127
A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions......Page 142
Fig. 1. Variations of time-delays between split shear-waves for 1 January 1996 .........Page 144
Fig. 2. Earthquake magnitude plotted against (a) durations and (b) slopes of increasing time-delays .........Page 147
Fig. 3. Time-expanded section of Figure 1a. Changes in time-delays in Band-1 of .........Page 150
Fig. 4. Shear-wave splitting time-delays at SAU for the period November 1999 .........Page 153
Table 1. Timetable of e-mail communications......Page 148
3D analogue models of variable displacement extensional faults: applications to the Revfallet Fault system, offshore mid-Norway......Page 158
Fig. 1. Major tectonic features of the mid-Norway margin and the study .........Page 159
Fig. 2. Structure map of the area on the intra-Lower Jurassic coal .........Page 160
Fig. 3. 2D model of deformation in the cover above a ductile .........Page 161
Fig. 4. Regional stratigraphic column and net sediment accumulation data from the .........Page 162
Fig. 5. (a, b, c) Semi-regional transects across the southern Revfallet Fault system. Location marked .........Page 163
Fig. 6. Summary diagram illustrating the geometry of the variable displacement deformation .........Page 164
Fig. 7. (a) Overhead view of Model 1 after 6 hours on a .........Page 165
Fig. 8. Serial sections through Model 1. Locations are indicated on Figure 7. .........Page 166
Fig. 9. (a) Overhead view of Model 2 after 6 hours at a .........Page 167
Fig. 10. Serial sections through Model 2. Locations are indicated on Figure 9. .........Page 168
Fig. 11. (a) Line drawing interpretations of selected sections from Model 1. Section .........Page 169
Fig. 12. (a) Interpreted seismic line near the location of line B–B' in .........Page 171
Fig. 13. Combined forward and reverse structural model for transect B–B'. See .........Page 172
Fig. 14. Synoptic diagram illustrating deformation paths for decoupled and partially coupled .........Page 173
3D evolution of a pop-up structure above a double basement strike-slip fault: some insights from analogue modelling......Page 176
Fig. 1. Model configuration of strike-slip faulting above a double basement fault. .........Page 177
Fig. 2. Top view line drawings of development of fault pattern with .........Page 179
Fig. 3. Plan views of top surface of experiment. (a) After 0.5 cm of .........Page 180
Fig. 6. Diagram illustrating the development of topographic relief during progressive stages .........Page 181
Fig. 7. Schematic sketch of palm tree structure with anticlinal bulge and .........Page 183
Fig. 8. Interpreted seismic section displaying a palm tree structure along the .........Page 184
Segment linkage during evolution of intracontinental rift systems: insights from analogue modelling......Page 188
Fig. 1. Block diagrams illustrating the form of the model and successive .........Page 192
Fig. 3. Plan view of a propagating fracture set on the surface .........Page 193
Fig. 4. Narrow-mode failure, in plan view. (a) Photograph of upper layer with .........Page 194
Fig. 6. Coalescence types between pairs of fractures. Two parent fractures (light .........Page 195
Fig. 8. An example of type 2 coalescence: (a) before and (b) after. Note .........Page 196
Fig. 12. Coalescence types 2 and 3 plotted on an obliquity versus frequencey histogram.......Page 197
Fig. 13. Differentiation of coalescence types 2 and 3 on a graph .........Page 198
Fig. 14. The Cenozoic Baikal rift system (after Agar & Klitgord 1995) .........Page 199
Fig. 15. The Cenozoic East African rift system (after Chapola & Kaphwiyo .........Page 200
Fig. 16. The Mesozoic to early Tertiary Central African rift system (after .........Page 201
Table 1. Characteristics of analogue materials and model ratios used in the experiments......Page 190
Hanging wall accommodation styles in ramp–flat thrust models......Page 204
Fig. 1. Hanging wall accommodation styles in ramp regions of overthrust faults. .........Page 205
Fig. 2. (a) Log stress versus log strain rate plot for Dow Corning .........Page 206
Fig. 3. Progressive stages and strain distribution in a Bingham hanging wall .........Page 207
Fig. 4. Strain distribution and wedge flow in the same material (DC-3179) .........Page 208
Fig. 5. Viscous wedge flow and strain distribution in a Rhodorsil Gomme .........Page 209
Fig. 6. Progressive stages in fault-bend folding of a Plastilina hanging .........Page 210
Fig. 8. Same as in Figure 7 but for cohesive sand, showing .........Page 211
Fig. A1. Force balance in a hanging wall block.......Page 213
Erosional forcing of basin dynamics: new aspects of syn- and post-rift evolution......Page 216
Fig. 1. (a) Simplified cartoon explaining weakening of the extended crust due to .........Page 218
Fig. 2. Numerical modelling of synrift extension of a young lithosphere (age .........Page 222
Fig. 3. Numerical model of synrift extension and erosion of a middle-aged .........Page 223
Fig. 5. Various stages of rift evolution produced by the model at .........Page 225
Fig. 6. Subsidence curves corresponding to the case of Figure 3 compared .........Page 226
Table 1. Values of parameters used......Page 221
Vertical movements of the Paris Basin (Triassic–Pleistocene): from 3D stratigraphic database to numerical models......Page 232
Fig. 1. (a) Main structural domains of the Cadomian–Variscan basement below the Paris .........Page 235
Fig. 2. Major 10–40 Ma duration stratigraphic cycles, unconformities and associated accommodation .........Page 236
Fig. 3. Isopach map from the base Scythian (top of the basement) .........Page 237
Fig. 4. Isopach map from the Toarcian–Aalenian boundary (Aalenian unconformity) to the .........Page 238
Fig. 5. Isopach map from the Lower/Upper Berriasian unconformity (Neo-Cimmerian unconformity .........Page 239
Fig. 6. Isopach map from the late Aptian unconformity (Austrian unconformity) to .........Page 240
Fig. 7. Geodynamic evolution of the Paris Basin.......Page 241
Fig. 9. Sketch describing the evolution of the lithosphere (Chablis model). The .........Page 242
Fig. 10. (a) Fit of the tectonic subsidence curve of the well 'la .........Page 244
Fig. 13. Tectonic subsidence curves for (a) Francheville well, (b) the two wells located .........Page 245
Fig. 14. Estimated uplift h along the profile.......Page 246
Fig. 15. Principles of the calculation of relative tectonics. See text for details.......Page 247
Fig. 18. Three characteristic behaviours of the velocity of relative tectonics as .........Page 248
Fig. 19. (a) Map of sedimentary thickness; (b) map of bathymetry; (c) map of change .........Page 249
Fig. 20. Set-up for the numerical model of folding, v is horizontal .........Page 251
Table 2. Rheological parameters adopted for the numerical model......Page 252
Table 1. Modelling constants......Page 243
Modelling and processing of 3D seismic data collected over the overlapping spreading centre on the East Pacific Rise at 9° 03' N......Page 258
Fig. 1. Bathymetry map of the area showing the two axial ridges .........Page 259
Fig. 2. A vertical cross-section of the velocity cube along the line .........Page 260
Fig. 3. Three slices through the model cube at the depths of .........Page 261
Fig. 4. Seismic data profile extracted from the real data volume along .........Page 262
Fig. 6. CMP gathers at the location marked on Figure 1: (a) result .........Page 263
Fig. 8. DMO stacked modelled data: (a) raw stack; (b) with time migration using .........Page 264
Fig. 9. Sensitivity tests on the synthetic data. (a) Testing the effect of .........Page 265
3D finite element model of major tectonic processes in the Eastern Mediterranean......Page 268
Fig. 1. Tectonic map of the eastern Mediterranean. The hatched area marks .........Page 269
Fig. 2. Three-dimensional sketch of the subducted slab beneath the Hellenic arc .........Page 270
Fig. 4. (a) 3D cross-section through the finite element model in NE direction. .........Page 271
Fig. 5. The combination of the plastic St Venant body parallel to .........Page 272
Fig. 7. Comparison of the modelled velocity field with the velocities from .........Page 274
Fig. 8. Surface strain rate and velocity field for model 2 with .........Page 275
Fig. 10. Representative yield stress envelopes for the crust of model 2 .........Page 276
Fig. 12. Comparison of the velocity field with the observed velocities from .........Page 277
Table 1. Parameters for temperature controlled dislocation creep......Page 273
3D discrete kinematic modelling of sedimentary basin deformation......Page 282
Fig. 1. (a) Diagram of the displacement of a node of the neutral .........Page 283
Fig. 2. 2.5D validation, (a, b) Initial and deformed configurations for a .........Page 285
Fig. 3. First 3D validation test: lateral boundary parallel to the boundary .........Page 286
Fig. 4. Second 3D validation test: lateral boundary non-parallel to the boundary .........Page 287
Fig. 5. Deformed basin, with combined flexural slip and vertical shear. (a) Flexural .........Page 289
Table 1. Variation of volume (as a percentage) in the hanging wall .........Page 288
3D discrete kinematic modelling applied to extensional and compressional tectonics......Page 292
Fig. 1. (a) Diagram of the deformation of a layer with the algorithm .........Page 294
Fig. 2. (a) basin at the initial state; (b) description of the domain boundaries.......Page 296
Fig. 3. (a) View of the deformed basin after 1000 m of displacement; (b) view .........Page 297
Fig. 4. (a) Map of the vertical projection on an horizontal plane of .........Page 298
Fig. 5. The legend on the left of each picture corresponds to .........Page 299
Modelling the influence of tectonic compression on the in situ stress field with implications for seal integrity: the Haltenbanken area, offshore mid-Norway......Page 302
Fig. 1. Schematic illustration of the relationship between the fluid pressure, overburden .........Page 303
Fig. 2. (a) Map of the main structural elements within the study area .........Page 304
Fig. 3. Depth-converted geological profile across the VØring Basin and TrØndelag Platform .........Page 305
Fig. 4. Generalized lithostratigraphiy and oil/gas occurrences on Haltenbanken (modified from .........Page 306
Fig. 5. (a) Relationship between leak-off test (LOT) data and overburden pressure (solid .........Page 307
Fig. 6. The two-dimensional elasto-plastic model that was constructed to simulate the .........Page 309
Fig. 7. Contour plots of the calculated vertical displacements in the elasto-plastic .........Page 310
Fig. 8. Contour plots of the vertical and horizontal stress in the .........Page 311
Fig. 11. Contour plots of the horizontal stress prediction on the western .........Page 312
Fig. 12. Vertical profiles showing the effect of stratigraphic layering and in-plane .........Page 313
Fig. 13. (a) Contour plot of the minimum horizontal stress as predicted in .........Page 314
Fig. 14. Minimum horizontal stress values derived from LOT data in the .........Page 315
Table 1. Material properties assigned to the sedimentary layers used in the numerical models......Page 308
Integrated 3D geomechanical modelling for deep subsurface deformation: a case study of tectonic and human-induced deformation in the eastern Netherlands......Page 320
Fig. 1. Location of the Roswinkel field. Dark shaded area delineates gas-water .........Page 321
Fig. 3. 3D seismic interpretaton (looking to WSW) showing interpreted base of .........Page 322
Fig. 4. Integrated methodology. First, the structural model is translated to a .........Page 324
Fig. 5. Structural modelling of fault surfaces in GOCAD.......Page 325
Fig. 6. Initial tectonic loading conditions of the model prior to gas .........Page 327
Fig. 7. Schematic diagram showing derivation of the proximity-to-failure parameter.......Page 328
(a) case 1, radial extension.......Page 329
(b) case 2, hydrostatic stress regime.......Page 330
(c) case 3, radial compression.......Page 331
(d) case 4, strike-slip.......Page 332
(e) case 5, normal faulting.......Page 333
Table 1. Lithostratigraphic units and tectonic events in the study area......Page 323
Table 2. Geomechanical parameters for the model units and the faults......Page 326
F......Page 336
L......Page 337
S......Page 338
T......Page 339
Z......Page 340




نظرات کاربران