دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوتکنولوژی ویرایش: نویسندگان: Harikesh Bahadur Singh. Anukool Vaishnav سری: ISBN (شابک) : 0323855776, 9780323855778 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 488 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 58 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Advances in Microbe-based Biostimulants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: پیشرفتها در محرکهای زیستی مبتنی بر میکروب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: پیشرفتها در محرکهای زیستی مبتنی بر میکروب پیشرفتها در مکانیسمهای میکروبی دخیل در تولید محصول و کاهش استرس را توصیف میکند. پیشرفتهای اخیر در درک ما از نقش میکروبها در کشاورزی پایدار و مدیریت بیماری، زمینه تحقیقاتی بسیار بالقوهای را ایجاد کرده است. گیاه هولوبیونت نقش مهمی در سیگنال دهی استرس، کارایی مصرف مواد مغذی و سلامت و حاصلخیزی خاک برای توسعه پایدار دارد. میکوریزوسفر، هیفوسفر، فیلوسفر، ریزوسفر و اندوسفر رابط های مهمی برای تبادل سیگنال و منابع بین گیاهان و محیط خاک هستند.
این کتاب منبع مرجع ایده آلی برای میکروبیولوژیست ها است. ، شیمیدانان کشاورزی، بیوتکنولوژیستها، بیوشیمیدانان، صنعتگران، محققان و دانشمندانی که بر روی میکروارگانیسمهای مهم کشاورزی و بهرهبرداری از آنها در کاربردهای آینده پایدار کار میکنند.
New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Advances in Microbe-Based Biostimulants describes advances in microbial mechanisms involved in crop production and stress alleviation. Recent developments in our understanding of the role of microbes in sustainable agriculture and disease management have created a highly potential research area. The plant holobiont has a significant role in stress signaling, nutrient use efficiency, and soil health and fertility for sustainable developments. The mycorrhizosphere, hyphosphere, phyllosphere, rhizosphere and endosphere are critical interfaces for the exchange of signaling and resources between plants and soil environment.?
This book is an ideal reference source for microbiologists, agrochemists, biotechnologists, biochemists, industrialists, researchers and scientists working on agriculturally important microorganisms and their exploitation in sustainable future applications.
Front cover Half title Full title Copyright Contents Contributors About the Editors Preface 1 - Plant growth promoting rhizobacteria - Advances and future prospects 1.1 Introduction 1.2 Review literature & recent developments 1.2.1 Sustainable agriculture 1.2.2 Biofertilizers 1.2.3 Vesicular arbuscular mycorrhizal root inoculant (VAMRI) 1.2.4 Mycorrhiza 1.2.5 Mycorrhiza as a biocontrol agent 1.2.6 Mycorrhiza as a bioremediation agent 1.2.7 Arbuscular mycorrhizal fungi 1.2.8 AMF shape the bacterial community in the mycorrhizosphere 1.2.9 Mechanisms employed by plant growth-promoting bacteria 1.2.10 Nitrogen fixation 1.2.11 Indole-3-Acetic acid production 1.2.12 Biocontrol activity 1.2.13 Siderophore production 1.2.14 Chitinase production 1.2.15 Zinc solubilizing microorganism 1.2.16 Potassium solubilizing microorganism 1.2.17 Phosphate solubilizing microorganism 1.3 Conclusion References 2 - Prospects of beneficial microbes as a natural resource for sustainable legumes production under changing climate 2.1 Introduction 2.2 Potential of symbiotic nitrogen fixation (SNF) 2.3 Factors affecting nodule formation and biological nitrogen fixation (BNF) 2.3.1 Environmental factors 2.3.1.1 High temperature 2.3.1.2 Cold stress 2.3.1.3 Moisture stress 2.3.1.4 Soil pH 2.3.1.5 Salinity 2.3.1.6 Drought 2.3.2 Nutritional factors 2.3.2.1 Nitrogen (N) level 2.3.2.2 Phosphorus (P) level 2.3.2.3 Other soil nutrients 2.3.2.3.1 Potassium (K) 2.3.2.3.2 Calcium (Ca) 2.3.2.3.3 Sulfur (S) 2.3.2.3.4 Molybdenum (Mo) 2.3.2.3.5 Boron (B) 2.3.2.3.6 Iron (Fe) 2.3.2.3.7 Cobalt (Co) 2.3.2.3.8 Nickel (Ni) 2.3.2.4 Organic matter 2.3.3 Biological factors 2.4 Conclusion 2.5 Future prospective Acknowledgments References 3 - Trichoderma as biostimulant - a plausible approach to alleviate abiotic stress for intensive production practices 3.1 Introduction 3.2 Review of literature 3.2.1 Trichoderma: habitation and growth 3.2.2 Trichoderma—Plant – pathogen interactions 3.2.2.1 Trichoderma—Plant Interactions 3.2.2.2 Effects on plant morphology 3.2.2.3 Effects on plant defense mechanism and physiology 3.2.2.4 Interaction between Trichoderma-pathogen 3.2.3 Induction of disease resistance through biostimulation 3.2.4 Trichoderma—a versatile biostimulant on abiotic stress tolerance, nutrient uptake capacity and growth of crops 3.2.5 Bioactive metabolites from Trichoderma as a tool to overcome abiotic stresses 3.2.6 Antioxidant mechanisms implicated in biostimulatory effects of trichoderma 3.2.7 Uses of Trichoderma in growth, yield and mass propagation of horticultural crops 3.2.8 Concept of bioformulation and composition 3.2.9 Expression of genes associated with biocontrol mechanism 3.2.10 Current scenario for production/market constraints 3.2.11 Guideline frame work and bio-commercial aspects for sustainable agriculture and horticultural applications 3.3 Conclusion References 4 - Mode of action of different microbial products in plant growth promotion 4.1 Introduction 4.2 Major microbial genera and their products 4.2.1 Bacteria 4.2.2 Fungi 4.2.3 Mycorrhizae 4.3 Mode of action(s) of microbes and their products 4.3.1 Through Microbially produced phytohormones 4.3.2 Through Microbially produced enzymes 4.3.3 Through microbially produced secondary metabolites 4.3.4 Through microbially produced antipathogenic products and antibiotics 4.4 Direct benefits to the plant 4.5 Indirect benefits to the plant 4.6 Challenges in understanding the mode of action 4.7 Future perspectives and conclusion References 5 - Role of AM fungi in growth promotion of high-value crops 5.1 Introduction 5.2 Arbuscular mycorrhizal fungi 5.3 AMF mediated benefits to high-value crops 5.3.1 Plant growth promotion 5.3.2 Biotic stress tolerance 5.3.3 Abiotic stress tolerance 5.3.4 Improvement in nutraceutical value 5.4 AMF application in micro propagation programme 5.5 Commercialization of AM fungi 5.6 Challenges of AMF technology 5.7 Conclusion and future prospects References 6 - Pseudomonas and Bacillus: A biological tool for crop protection 6.1 Introduction 6.2 Pseudomonas 6.2.1 Mechanism of action 6.2.1.1 Biological nitrogen fixation 6.2.1.2 Production of HCN or volatile organic compounds (VOCs) 6.2.1.3 Production of hormones 6.2.1.3.1 IAA 6.2.1.3.2 GA 6.2.1.3.3 Ethylene 6.2.1.4 Production of siderophore 6.2.1.5 Phosphates solubilization 6.3 Bio-control activity of Pseudomonas against plant pathogens 6.3.1 Bacillus 6.3.1.1 Plant growth promotion 6.3.1.2 Lipopeptide 6.3.1.3 Systemically induced disease resistance 6.4 Bio-control activity of Bacillus spp. against plant pathogens References 7 - Underlying forces of plant microbiome and their effect on plant development 7.1 Introduction 7.2 Plant microbiome diversity 7.2.1 Microbiota diversity belowground 7.2.2 Microbiota above the ground 7.3 Dynamic of plant microbes in plants 7.4 Plant microbe’s adaptability 7.5 Microbiome functions 7.5.1 Application of microbes in sustainable agriculture 7.5.2 Farm microbiome preparation 7.5.3 Plant hormone analogue biosynthesis through plant microbiome 7.5.4 Nitrogen fixation through plant-microbiome 7.5.5 Effect of microbiome-based hormones in plant stresses 7.6 Conclusions and future prospects References 8 - Plant viruses as biopesticides 8.1 Introduction 8.2 Research methodology 8.3 Categories of pesticides 8.4 Major viral biopesticides 8.5 Mode of action 8.6 Formulation / synthesis of viral biopesticides 8.7 Biopesticides manufacturing companies 8.8 Governing authorities / policies 8.9 RNAi viral biopesticides with nanotech approach 8.10 Recombinant viral biopesticides 8.11 A case study 8.12 Challenges and drawbacks 8.13 Major advantages 8.14 Conclusion, future prospects and take away Acknowledgment Authors contribution Declaration of competing interest References 9 - Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants 9.1 Introduction 9.2 Positive effects of microalgal extract on plant growth and productivity 9.3 Microalgal biostimulants for managements of biotic and abiotic stress 9.4 Microalgal biostimulants emphasized under abiotic stress 9.5 Effects of microalgae biostimulants on biotic stress 9.6 Microalgal extract: a mixture with multifaceted mechanisms 9.6.1 The mechanism under the action of abiotic stress 9.6.2 Mechanism of action under biotic stress 9.7 Concluding remarks and future prospects References 10 - Utilization of omics approaches for underpinning plant-microbe interaction 10.1 Introduction 10.2 Plant- microbial communications 10.3 Rhizospheric root microbial interaction 10.4 Endosphere and microbial communication 10.5 Plant microbial interaction and quorum sensing 10.6 Fungal-plant interaction 10.7 Plant-microbe signaling 10.8 Agrobacterium – crown gall disease 10.9 Different perspectives of bioinformatics to apprehend soil microorganisms 10.10 Plant-microbe interactions promote plant growth 10.11 Omics approaches for plant-microbe interaction 10.12 Transcriptomics 10.13 Next generation sequencing 10.14 Amplicon sequencing 10.15 Reverse transcription polymerase chain reaction (RT-PCR) and real-time polymerase chain reaction (qPCR) 10.16 TRAC anaylsis 10.17 Biochemical methods 10.18 Laser microdisinfection 10.19 CRISPR 10.20 Proteomics 10.21 Two- dimensional gel electrophoresis (2-DE) 10.22 Fluorescence 2-D difference gel electrophoresis (DIGE) 10.23 Isotope-Coded affinity tag (ICAT) 10.24 Mass spectrometry 10.25 Secretome 10.26 Metagenomics 10.27 Conclusion and future prospect References 11 - Extremophiles for sustainable agriculture 11.1 Introduction 11.2 Temperature 11.3 Thermophiles in agriculture 11.4 Psychrophiles in agriculture 11.5 Ice-binding proteins 11.6 Anti-freeze proteins (AFPs) 11.7 pH tolerants in agriculture 11.8 Alkalophiles and acidophiles in relation to soil pH 11.9 Managing high and low pH stressors in plants 11.10 PGPM enhanced tolerance to soil acidity 11.11 PGPM enhanced tolerance to soil alkalinity 11.12 Drought resistance 11.13 Halophiles in agriculture 11.14 Radiations 11.15 Managing toxins and chemicals in soil 11.16 Biosurfactants 11.17 Future perspectives References 12 - Seed biopriming with biopesticide: A key to sustainability of agriculture 12.1 Introduction 12.2 Agricultural sustainability 12.3 Biopesticides 12.4 Biopriming with beneficial microbes 12.5 Seed priming and its mechanism of action 12.6 Biopriming and induced systemic resistance 12.7 Biopriming and sustainable agriculture 12.8 Conclusion References 13 - Insights into novel cell immobilized microbial inoculants 13.1 Introduction 13.2 Bio-inoculant formulations and challenges 13.3 Contemporary vs advanced formulations 13.4 Microbial immobilization 13.4.1 Flocculation 13.4.2 Adsorption to surface 13.4.3 Covalent bonding with carrier 13.4.4 Matrix entrapment 13.4.5 Encapsulation in polymer gel 13.5 Advanced bio-encapsulation 13.5.1 Macro-encapsulation 13.5.2 Micro-encapsulation 13.5.2.1 Co-acervation 13.5.2.2 Extrusion 13.5.2.3 Spray drying 13.5.2.4 Solvent evaporation 13.5.2.5 Emulsion 13.5.2.6 Interfacial polymerization 13.5.2.7 Gelation 13.5.2.8 Pre-gel dissolution 13.6 Carriers used in bio-encapsulation 13.7 Additives in immobilization matrix 13.7.1 Chitin and derivatives 13.7.2 Skim milk 13.7.3 Starch 13.7.4 Sugars 13.7.5 Clay 13.7.6 Humic acid 13.7.7 Protein hydrolysates 13.7.8 Miscellaneous materials 13.8 Microbial exo-polysaccharides- the miracle molecules 13.9 Cell immobilization, microbial biomass and physiology 13.10 Microbial resilience in immobilized cells 13.10.1 Environmental stress alleviation 13.10.2 Toxicity resistance 13.10.3 Resistance to predation 13.11 Immobilized microbial cells in agriculture 13.12 Immobilized microbes as bio-remediators 13.13 Conclusion and future prospective References 14 - Role of mycorrhizosphere as a biostimulant and its impact on plant growth, nutrient uptake and stress management 14.1 Introduction 14.2 Plant growth promoting rhizobacteria (PGPR) 14.3 Plant health promoting fungi (PGPF) 14.4 Biostimulant phenomenon of mycorrhizosphere for sustainable agriculture 14.5 Efficiency of nutrient uptake 14.6 Mycorrhizospheric effect on stress management 14.7 Symbiotic effect of arbuscular mycorrhizae 14.8 Effect of AM fungi on mycorrhizosphere bacteria and vice versa 14.9 Significance of AM fungi on enhancing sustainable plant growth 14.9.1 Cellular level interactions 14.9.2 Effect of soil microbial communities on the influence of agricultural management 14.9.3 Molecular tools for functional analysis of mycorrhizosphere 14.10 Conclusion 14.11 Future prospects References 15 - Trichoderma spp. as bio-stimulant: Molecular insights 15.1 Introduction 15.2 Hormones 15.3 Volatile organic compounds 15.4 Other secondary metabolites 15.5 Bioaugmentation and biostimulation of problem soils 15.6 Efficacy of microbial bio-stimulation 15.7 Synergistic actions 15.8 Formulations 15.9 Conclusions and future prospects References 16 - Enhancing the growth and disease suppression ability of Pseudomonas fluorescens 16.1 Introduction 16.2 Mechanism of biocontrol by Pseudomonas 16.2.1 Antibiosis 16.2.2 Hydrogen cyanide production 16.2.3 Siderophores production 16.3 Plant growth promotions 16.3.1 Phytohormone production 16.3.1.1 Indole-3-acetic acid 16.3.1.2 Cytokinins 16.3.1.3 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase 16.4 Molecular confirmations of Pseudomonas fluorescens by 16S ribosomal RNA sequencing 16.5 Control of plant diseases in crops 16.5.1 Agronomical crops 16.5.2 Fruits and vegetables 16.6 Future prospects and conclusion References 17 - Synthetic biology tools: Engineering microbes for biotechnological applications 17.1 Introduction 17.2 History of synthetic biology 17.3 Engineering central dogma of life 17.3.1 Optimization central dogma’s processes 17.3.1.1 DNA engineering 17.3.1.2 Transcriptional engineering 17.3.1.3 Translational engineering 17.3.2 Engineering intrinsic regulatory mechanism 17.3.2.1 Control over transcription 17.3.2.2 Control of translation 17.3.2.3 Regulation over protein modification 17.3.3 Engineering extrinsic environment of cell 17.3.3.1 Genetic circuit with signal receptors 17.4 Designing of synthetic biology tools 17.4.1 Designing predictable tools 17.4.1.1 Chassis selection 17.4.1.2 Designing and engineering of biological parts 17.4.1.3 Characterization of biological parts 17.4.2 Types of designs and bio-engineering’s of synthetic tools 17.4.2.1 Automated biological tools 17.4.2.2 Phenotypic engineering 17.4.2.3 Metabolic engineering 17.4.2.4 Horizontal transfer and transmissibility 17.4.2.5 Xenobiology 17.4.2.6. Modulation of human physiology 17.5 Build-up of synthetic biology tools 17.5.1 DNA construction 17.5.2 Genome editing 17.5.3 Construction libraries 17.5.4 Booting of constructs 17.5.5 Strategies for DNA assemblage 17.6 Testing of DNA constructs 17.6.1 High throughput screening (HTS) 17.6.2 Directed evolution 17.7 Application of synthetic biological tools 17.7.1 Pharmaceutical application 17.7.2 Application in food, dairy and beverage 17.7.3 Agricultural application 17.7.3.1 Enhancement of nutritional contents like carotenoids, fatty acids, natural sweetener and steroids 17.7.3.2 Denovo pathways for greater improvement in growth and prognosticating the functions in silico and to attain therm ... 17.7.3.3 Engineering with photoautotrophs for productions of biofuels, antibodies, vaccines, biopharmaceuticals 17.7.3.4 Engineering microbes take the edge off chemical fertilizers and pesticides 17.7.4 Other industrial application 17.8 Challenges in the way of synthetic biology tools 17.8.1 Designing of proper chassis 17.8.2 Enhancing host repertory 17.8.3 Development of universal system of production 17.8.4 Constructing cell- free environment 17.8.5 System for standardizing, modeling and metrology 17.9 Conclusion References 18 - Role of microbial consortia in remediation of soil, water and environmental pollution caused by indiscriminate use of ... 18.1 Introduction 18.2 Microbial consortia 18.2.1 Naturally occurring strategies of microbial consortium 18.2.2 Types of consortium 18.2.2.1 Artificial consortium 18.2.2.2 Synthetic consortium 18.2.2.3 Natural consortia 18.3 Soil, water and environmental pollution and bioremediation by microbial consortia 18.3.1 Degradation of soil by the indiscriminate use of chemicals and remedial measures 18.3.1.1 Herbicides 18.3.1.1.1 Important herbicides, their toxicity and bioremediation measures 18.3.1.2 Fungicides 18.3.1.3 Insecticides and acaricides 18.3.1.3.1 Important insecticides/acaricides, their toxicity and bioremediation measures 18.3.2 Contamination of water bodies by harmful chemicals and remedial measures 18.3.3 Other environmental pollution and remedial measures 18.4 Future opportunities and challenges 18.5 Concluding remarks References 19 - Sustainable agriculture and viral diseases of plants: An overview 19.1 Introduction 19.2 Plant stress and immune response 19.2.1 Host and pathogen interaction 19.2.2 Biotic stress and plant immune response 19.3 Biostimulants 19.3.1 Microbe-based biostimulants 19.3.2 Microbial biostimulants as a source of sustainable agricultural practice in viral disease resistance/management 19.4 Sustainable agriculture, biotechnology and plant viruses 19.5 Conclusion Conflict of interest References 20 - Enhancement of plant nutrient uptake by bacterial biostimulants 20.1 Introduction 20.2 Plant nutrient uptake mechanisms 20.3 Biostimulants 20.4 Categories of biostimulants and their effect on plant growth and productivity 20.4.1 Vegetal and animal protein hydrolysates 20.4.2 Humic and fulvic acid 20.4.3 Macroalgae seaweeds extracts 20.4.4 Silicon 20.4.5 Arbuscular mycorrhizal fungi 20.4.6 Bacterial biostimulants 20.5 Indirect mechanism of bacterial biostimulants to enhance nutrient uptake 20.6 Direct mechanism of bacterial biostimulants to enhance plant nutrient uptake 20.7 Bacterial biostimulants to enhance the growth and stress tolerance 20.8 Bacterial biostimulants as biocontrol agents 20.9 Conclusion and prospects References Index Back cover