دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Michio Ui, Toshiaki Katada, Toshihiko Murayama, Hitoshi Kurose (auth.), Shozo Kito M.D., Ph.D., Tomio Segawa Ph.D., Kinya Kuriyama M.D., Henry I. Yamamura Ph.D., Richard W. Olsen Ph.D. (eds.) سری: Advances in Experimental Medicine and Biology 160 ISBN (شابک) : 9781468448078, 9781468448054 ناشر: Springer US سال نشر: 1984 تعداد صفحات: 297 [302] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Neurotransmitter Receptors: Mechanisms of Action and Regulation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گیرنده های عصبی: مکانیسم های عمل و تنظیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلسه به مناسبت دهمین سالگرد دکتر کیتو به عنوان استاد گروه سوم پزشکی داخلی دانشکده پزشکی دانشگاه هیروشیما برگزار شد. دکتر کیتو در سال 1927 در ناگویا به دنیا آمد، از دانشکده پزشکی دانشگاه توکیو فارغ التحصیل شد و مدرک کارشناسی ارشد خود را در سال 1951 دریافت کرد. او اولین سال های تحصیلی خود را به عنوان همکار پژوهشی (1952 - 1968) در بخش سوم پزشکی داخلی دانشگاه توکیو گذراند. مدرسه پزشکی. در این دوره به مدت یک سال (1952 - 1953) در دانشکده پزشکی دانشگاه ایلینویز تحصیل کرد و در سال 1959 دکترای خود را گرفت. در سال 1968 مربی و در سال 1971 به عنوان استادیار دانشکده پزشکی زنان توکیو منصوب شد. در سال 1973، او استاد گروه سوم پزشکی داخلی، دانشکده پزشکی دانشگاه هیروشیما شد. دکتر کیتو یک پزشک است اما همیشه مشتاق پزشکی پایه است. زمینه تحقیقاتی اصلی او مربوط به میترهای عصبی و گیرنده های آنها در سیستم عصبی مرکزی است. او ترکیبی از ایمونوهیستوشیمی انتقال دهنده عصبی و اتورادیوگرافی گیرنده را به عنوان تکنیک های تحقیقاتی ترجیح می دهد. او همچنین به مطالعات بیوشیمیایی روی پروتئین های آمیلوئید مشغول است. هنگامی که هشتمین کنگره بین المللی فارماکولوژی در توکیو در سال 1981 برگزار شد، دکتر سگاوا، دکتر یامامورا و دکتر کوریاما سمپوزیوم ماهواره ای را در مورد گیرنده های انتقال دهنده عصبی در هیروشیما ترتیب دادند. دکتر کیتو در این جلسه شرکت کرد و عمیقاً تحت تأثیر ارائه ها و بحث های فعال قرار گرفت. به منظور کمک به پیشرفت علوم عصبی، دکتر
This meeting was held commemorating Dr. Kito's 10th Anniversary as Professor of the Third Department of Internal Medicine, Hiroshima University School of Medicine. Dr. Kito was born in 1927 in Nagoya, graduated from Tokyo University School of Medicine and received his M. D. in 1951. He spent his first academic years as a research associate (1952 - 1968) at the Third Department of Internal Medi cine, Tokyo University School of Medicine. During this period he studied for one year (1952 - 1953) at Illinois University School of Medicine, and acquired his Ph. D. in 1959. In 1968 he became Instructor and in 1971 he was appointed as Assistant Professor of Tokyo Women's Medical College. In 1973, he became Professor of the Third Department of Internal Medicine, Hiroshima University School of Medicine. Dr. Kito is a clinician but he is always enthusiastic about basic medicine. His major research field concerns neurotrans mitters and their receptors in the central nervous system. He prefers a combination of neurotransmitter immunohistochemistry and receptor autoradiography as research techniques. He is also engaged in biochemical studies on amyloid proteins. When the Eighth Inter national Congress of Pharmacology was held in Tokyo in 1981, Dr. Segawa, Dr. Yamamura, and Dr. Kuriyama organized a Satellite Symposium on Neurotransmitter Receptors in Hiroshima. Dr. Kito attended this meeting and was deeply impressed by the active presentations and discussions. In order to make some contribution to the progress of neuro sciences, Dr.
Preface Contents 1 Mahler Measures of Polynomials in One Variable 1.1 Introduction 1.1.1 Polynomials over the Field mathbbC of Complex Numbers 1.1.2 Polynomials over the Field mathbbQ of Rational Numbers 1.2 Kronecker's Two Theorems 1.3 Mahler Measure Inequalities 1.4 A Lower Bound for an Integer Polynomial Evaluated at an Algebraic Number 1.5 Polynomials with Small Coefficients 1.6 Separation of Conjugates 1.7 The Shortness of a Polynomial 1.7.1 Finding Short Polynomials 1.8 Variants of Mahler Measure 1.8.1 The Weil Height 1.9 Notes 1.10 Glossary 2 Mahler Measures of Polynomials in Several Variables 2.1 Introduction 2.2 Preliminaries for the Proofs of Theorems 2.5 and 2.6 2.3 Proof of Theorem 2.5 2.4 Proof of Theorem 2.6 2.5 Computation of Two-Dimensional Mahler Measures 2.6 Small Limit Points of mathcalL? 2.6.1 Shortness Conjectures Implying Lehmer's Conjecture and Structural Results for mathcalL 2.6.2 Small Elements of the Set of Two-Variable Mahler Measures 2.7 Closed Forms for Mahler Measures of Polynomials of Dimension at Least 2 2.7.1 Dirichlet L-Functions 2.7.2 Some Explicit Formulae for Two-Dimensional Mahler Measures 2.7.3 Mahler Measures of Elliptic Curves 2.7.4 Mahler Measure of Three-Dimensional Polynomials 2.7.5 Mahler Measure Formulae for Some Polynomials of Dimension at Least 4 2.7.6 An Asymptotic Mahler Measure Result 2.8 Notes 2.9 Glossary 3 Dobrowolski's Theorem 3.1 The Theorem and Preliminary Lemmas 3.2 Proof of Theorem 3.1: Dobrowolski's Lower Bound for M(α) 3.3 Notes 3.4 Glossary 4 The Schinzel–Zassenhaus Conjecture 4.1 Introduction 4.1.1 A Simple Proof of a Weaker Result 4.2 Proof of Dimitrov's Theorem 4.3 Notes 4.4 Glossary 5 Roots of Unity and Cyclotomic Polynomials 5.1 Introduction 5.2 Solving Polynomial Equations in Roots of Unity 5.3 Cyclotomic Points on Curves 5.3.1 Definitions 5.3.2 mathcalL(f) of Rank 1 5.3.3 mathcalL(f) Full of Rank 2 5.3.4 mathcalL(f) of Rank 2, but Not Full 5.3.5 The Case of f Reducible 5.3.6 An Example 5.4 Cyclotomic Integers 5.4.1 Introduction to Cyclotomic Integers 5.4.2 The Function mathscrN(β) 5.4.3 Evaluating or Estimating mathscrN(sqrtd) 5.4.4 Evaluation of the Gauss Sum 5.4.5 The Absolute Mahler Measure of Cyclotomic Integers 5.5 Robinson's Problems and Conjectures 5.6 Cassels' Lemmas for mathscrM(β) 5.7 Discussion of Robinson's Problems 5.7.1 Robinson's First Problem 5.7.2 Robinson's Second Problem 5.8 Discussion of Robinson's Conjectures 5.8.1 The First Conjecture 5.8.2 The Second Conjecture 5.8.3 The Third Conjecture 5.8.4 The Fourth Conjecture 5.8.5 The Fifth Conjecture 5.9 Multiplicative Relations Between Conjugate Roots of Unity 5.10 Notes 5.11 Glossary 6 Cyclotomic Integer Symmetric Matrices I: Tools and Statement of the Classification Theorem 6.1 Introduction 6.2 The Mahler Measure of a Matrix and Cyclotomic Matrices 6.3 Flavours of Equivalence: Isomorphism, Equivalence and Strong Equivalence of Matrices 6.4 Growing Cyclotomic Matrices 6.5 Gram Vectors 6.6 Statement of the Classification Theorem for Cyclotomic Integer Symmetric Matrices 6.7 Glossary 7 Cyclotomic Integer Symmetric Matrices II: Proof of the Classification Theorem 7.1 Cyclotomic Signed Graphs 7.2 Cyclotomic Charged Signed Graphs 7.3 Cyclotomic Integer Symmetric Matrices: Completion of the Classification 7.4 Further Exercises 7.5 Notes on Chaps. 6摥映數爠eflinkC:CYCLOTOMICS66 and 7 7.6 Glossary 8 The Set of Cassels Heights 8.1 Cassels Height and the Set mathscrC 8.2 The Derived Sets and the Sumsets of mathscrC 8.3 Proof of Theorem 8.4 8.3.1 Structure and Labelling of Thue Sets 8.4 Cassels Heights of Cyclotomic Integers in mathbbQ(ωp) 8.5 Proof of Theorem 8.14 8.6 Proof of Theorem 8.13 8.7 Notes 8.8 Glossary 9 Cyclotomic Integer Symmetric Matrices Embedded in Toroidal and Cylindrical Tessellations 9.1 Introduction 9.2 Preliminaries: Notation and Tools 9.3 Cyclotomic Graphs Embedded in T2k 9.4 Changes for Charges 9.5 Glossary 10 The Transfinite Diameter and Conjugate Sets of Algebraic Integers 10.1 Introduction 10.2 Analytic Properties of the Transfinite Diameter 10.3 Application to Conjugate Sets of Algebraic Integers 10.4 Integer Transfinite Diameters 10.4.1 The Integer Transfinite Diameter 10.4.2 The Monic Integer Transfinite Diameter 10.5 Notes 10.6 Glossary 11 Restricted Mahler Measure Results 11.1 Monic Integer Irreducible Noncyclotomic Polynomials 11.2 Complex Polynomials That are Sums of a Bounded Number of Monomials 11.3 Some Sets of Algebraic Numbers with the Bogomolov Property 11.3.1 Totally p-Adic Fields 11.3.2 Abelian Extensions of mathbbQ 11.3.3 Langevin's Theorem 11.4 The Height of Zhang and Zagier and Generalisations 11.5 The Weil Height of α When mathbbQ(α)/mathbbQ is Galois 11.6 Notes 11.7 Glossary 12 The Mahler Measure of Nonreciprocal Polynomials 12.1 Mahler Measure of Nonreciprocal Polynomials 12.1.1 The Set mathcalH of Rational Hardy Functions 12.2 Proof of Theorem 12.1 12.2.1 Start of the Proof 12.2.2 The Case ell< 2k 12.2.3 The Case ellge2k: Proof that M(P)geθ0 12.2.4 The Case ellge2k: Existence of a δ, Part 1 12.2.5 The Case ellge2k: Existence of a δ, Part 2 12.2.6 The Case ellge2k: Completion of the Proof 12.3 Notes 12.4 Glossary 13 Minimal Noncyclotomic Integer Symmetric Matrices 13.1 Supersporadic Matrices and Other Sporadic Examples 13.2 Minimal Noncyclotomic Charged Signed Graphs: Any that Are Not Supersporadic 13.2.1 The Uncharged Case 13.2.2 The Charged Case 13.3 Completing the Classification 13.4 Notes 13.5 Glossary 14 The Method of Explicit Auxiliary Functions 14.1 Conjugate Sets of Algebraic Numbers 14.2 The Optimisation Problem 14.2.1 Dualising the Problem 14.2.2 Method Outline 14.3 The Schur–Siegel–Smyth Trace Problem 14.3.1 Totally Positive Algebraic Integers with Small Mean Trace 14.4 The Mean Trace of α Less Its Least Conjugate 14.5 An Upper Bound Trace Problem 14.6 Mahler Measure of Totally Real Algebraic Integers 14.7 Mahler Measure of Totally Real Algebraic Numbers 14.8 Langevin's Theorem for Sectors 14.8.1 Further Remarks 14.9 Notes 14.10 Glossary 15 The Trace Problem for Integer Symmetric Matrices 15.1 The Mean Trace of a Positive Definite Matrix 15.2 The Trace Problem for Integer Symmetric Matrices 15.3 Constructing Examples that Have Minimal Trace 15.4 Notes 15.5 Glossary 16 Small-Span Integer Symmetric Matrices 16.1 Small-Span Polynomials 16.2 Small-Span Integer Symmetric Matrices 16.3 Bounds on Entries and Degrees 16.4 Growing Small Examples 16.4.1 Two Rows 16.4.2 Three Rows 16.4.3 Four Rows 16.4.4 Five Rows 16.4.5 Six Rows 16.4.6 Seven Rows 16.4.7 Eight Rows 16.4.8 Nine Rows 16.4.9 Ten Rows 16.4.10 Eleven Rows 16.4.11 Twelve Rows 16.4.12 Thirteen Rows 16.5 Cyclotomic Small-Span Matrices 16.5.1 Examples with an Entry of Modulus Greater Than 1 16.5.2 Subgraphs of the Sporadic Examples 16.5.3 Subgraphs of Cylindrical Tessellations 16.5.4 Subgraphs of Toroidal Tessellations 16.6 The Classification Theorem 16.7 Notes 16.8 Glossary 17 Symmetrizable Matrices I: Introduction 17.1 Introduction 17.2 Definitions and Immediate Consequences 17.3 The Structure of Symmetrizable Matrices 17.4 The Balancing Condition and Its Consequences 17.5 The Symmetrization Map 17.6 Interlacing 17.7 Equitable Partitions of Signed Graphs 17.8 Notes 17.9 Glossary 18 Symmetrizable Matrices II: Cyclotomic Symmetrizable Integer Matrices 18.1 Cyclotomic Symmetrizable Integer Matrices 18.2 Quotients of Signed Graphs 18.3 Notes 18.4 Glossary 19 Symmetrizable Matrices III: The Trace Problem 19.1 The Trace Problem for Symmetrizable Matrices 19.1.1 Definitions, Notation and Statement of the Results 19.1.2 Proof of Proposition 19.3摥映數爠eflinkP:rattrace19.319 19.1.3 Corollaries, Including Theorem 19.4摥映數爠eflinkT:main19.419 19.1.4 The Structure of Minimal-Trace Examples 19.2 Notes 19.3 Glossary 20 Salem Numbers from Graphs and Interlacing Quotients 20.1 Introduction 20.2 Salem Graphs 20.3 Examples of Salem Graphs 20.3.1 Nonbipartite Examples 20.3.2 Bipartite Examples 20.3.3 Finding Cyclotomic Factors 20.4 Attaching Pendant Paths 20.4.1 A General Construction 20.4.2 An Application to Salem Graphs 20.5 Interlacing Quotients 20.5.1 Rational Interlacing Quotients 20.5.2 Circular Interlacing Quotients 20.5.3 From CIQs to Cyclotomic RIQs 20.5.4 Salem Numbers from Interlacing Quotients 20.6 Notes 20.7 Glossary 21 Minimal Polynomials of Integer Symmetric Matrices 21.1 Introduction 21.2 Small Discriminant 21.3 Small Span 21.3.1 The Cyclotomic Case 21.3.2 The Noncyclotomic Case 21.3.3 Some Counterexamples to Conjecture21.2 21.4 Small Trace 21.5 Polynomials that are Not Interlaced 21.6 Counterexamples for all Degrees Greater than 5 21.6.1 Degrees 8 to 16 21.6.2 Degree 20 21.6.3 Degree 19 and All Degrees Greater than 20 21.6.4 All Together Now 21.7 Notes 21.8 Glossary 22 Breaking Symmetry Appendix A Algebraic Background A.1 Self-Reciprocal Polynomials A.2 Resultant Essentials A.3 Valuation Essentials A.4 Galois Theory Essentials A.5 Algebraic Numbers and Algebraic Integers A.5.1 The Gorškov Polynomials A.6 Newton's Identities A.7 Jänichen's Generalisation of Fermat's Little Theorem Appendix B Combinatorial Background B.1 Interlacing B.2 Graph Theory B.3 Perron–Frobenius Theory Appendix C Tools from the Theory of Functions Appendix D Tables D.1 Small Mahler Measures D.2 Known Small Mahler Measures of Two-Variable Polynomials Appendix References Index