دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Huijue Jia
سری:
ISBN (شابک) : 9789814968782, 9781003410980
ناشر: Jenny Stanford Publishing
سال نشر: 2023
تعداد صفحات: 249
[252]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 214 Mb
در صورت تبدیل فایل کتاب Neuroscience for Artificial Intelligence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم اعصاب برای هوش مصنوعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This is a timely book to introduce the new discoveries and ideas in neuroscience, for the next wave of more powerful AI. Based on hundreds of publications from top journals, the book fills in the gap between existing computational hardware/algorithms and emerging knowledge from neuroscience.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Chapter 1: Evolving under Constraints 1.1: An Evolutionary Continuum 1.2: Overall Structure of the Brain 1.3: Number of Neurons and Their Connections 1.4: Fuel for the Brain 1.5: Summary Chapter 2: The Senses as Basic Input 2.1: Olfaction 2.1.1: Prioritizing with Separation and Tagging? 2.1.2: The Spatiotemporal Resolution of Olfaction 2.2: Taste 2.3: Hearing 2.4: Visual Signal Processing in Each Cell 2.5: Sensing Mechanical Forces 2.6: Summary Chapter 3: Changing Priorities with Age 3.1: Growing and Learning with the Cerebellum 3.2: A Cortical Network that Ripens with Age 3.3: Summary Chapter 4: Memory in Cells 4.1: Engrams: Single-Cell Basis of Memory 4.2: To Engage More Cells for a Stronger Memory? 4.3: Competition for Allocation into a Memory Engram 4.4: Memory Consolidation in View of Hashing 4.5: Combining Old and New 4.6: Summary Chapter 5: Memory in Dendritic Spines 5.1: Spiny Neurons 5.2: Local Spine Dynamics 5.2.1: Memory Decay Down to Individual Spines 5.2.2: New and Leaky 5.2.3: Thin and Learning Fast 5.3: Memory Replays at Synapses 5.4: Sharp-Wave Ripples—Weights of Dendritic Spines in Action 5.5: Gated Storage of New Details 5.6: Summary Chapter 6: Sleeping and Dreaming 6.1: Non-Rapid Eye Movement Sleep—Flushing Waste Out of the Brain and Stock-Up 6.2: The Alternating and Progressing Phases of Sleep 6.3: Interneurons—Global or Local Patterning with Brain-Wide Oscillations 6.4: Evolutionarily Ancient Circuits Tapping into Our Dreams? 6.5: Rapid Eye Movement Sleep 6.6: Daydreaming and the Refreshing Effect of Switching Tasks 6.7: Summary Chapter 7: Mastering Space and Time 7.1: Place Cells and Grid Cells 7.2: Stellate Neurons and Pyramidal Neurons for Objects and Grids? 7.3: Time or Rhythm? 7.4: Sensing Speed and Acceleration 7.5: The Vestibular System for Sensing Self-Motion 7.6: Vector Information from Other Cells Around the Hippocampus 7.7: Goal-Directed Vector Navigation 7.8: A More Versatile Generative Adversarial Network in the Brain? 7.9: Social Navigation 7.10: Summary Chapter 8: Arithmetics, Talking and Reading 8.1: A Distributed Network That Works Together 8.2: Object Tracking for Low Numbers 8.3: Torus and the Number of Functional Domains on the Hippocampus? 8.4: Analog Representation of Numbers in Humans and Animals 8.5: Abstract Representation of Numbers and Arithmetic Operations 8.6: Multi-Module Coordination during Singing 8.7: Talking or Reading 8.7.1: Hippocampus-Dependent Procedural Memory for Speaking 8.7.2: Reading from Grids to Details? 8.8: Summary Chapter 9: Causality and Cognitive Exploration 9.1: To Explore or Not 9.2: Expected or Unexpected 9.3: Path Diagrams and Counterfactuals in View of Navigation 9.4: Summary Index