دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Xin Tang (editor)
سری:
ISBN (شابک) : 0128153180, 9780128153185
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 728
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Neuronal Chloride Transporters in Health and Disease به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتقال دهنده های کلرید عصبی در سلامت و بیماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در چند سال گذشته، مجموعه جالبی از تحقیقات جدید انجام شده است که اختلالات در بیان یا عملکرد ناقلان کلرید عصبی را به تعداد فزاینده ای از بیماری ها از اوتیسم تا پیری مغز مرتبط می کند. این کتاب مفاهیم اصلی را معرفی میکند و پیشرفتهای اخیر در درک فیزیولوژی و پاتوفیزیولوژی خانوادههای KCC و NKCC ناقلهای کلرید عصبی را برجسته میکند. زیست شناسی ناقل کلرید عصبی، از جمله نقش در تنظیم گرادیان کلرید گذرنده و عملکردهای مستقل از انتقال کلرید، مانند تنظیم انتقال عصبی تحریکی، بررسی می شود. فصلها همچنین به بررسی ساختار، اصلاح پس از ترجمه، قاچاق غشاء، و شرکای تعامل پروتئین ناقلهای کلرید عصبی، و همچنین عوامل ژنتیکی و محیطی که بیان آنها را در نورونها تنظیم میکنند و رویکردهای درمانی جدید که ناقلهای کلرید عصبی را هدف قرار میدهند، اختصاص دارد. برای درمان بیماری های عصبی این جلد جدید خلاصهای بهروز از پیشرفتهای اخیر در تحقیقات انتقالدهنده کلرید عصبی را با تأکید ویژه بر برخی از موضوعات کلیدی در حال ظهور در این زمینه به خوانندگان ارائه میدهد.
In the past several years, there has been an exciting body of new research that links impairments in the expression or function of neuronal chloride transporters to a growing number of diseases spanning from autism to brain aging. This book introduces the core concepts and highlights the recent advances in understanding the physiology and pathophysiology of the KCC and NKCC families of neuronal chloride transporters. Neuronal chloride transporter biology is reviewed, including roles in setting the transmembrane chloride gradient and the chloride transport-independent functions, such as regulating excitatory neurotransmission. Chapters are also dedicated to addressing the structure, post-translational modification, membrane trafficking, and protein interaction partners of neuronal chloride transporters, as well as the genetic and environmental factors that regulate their expression in neurons and the novel therapeutic approaches that target neuronal chloride transporters to treat neurological diseases. This new volume will provide readers with an up-to-date summary of the recent advances in neuronal chloride transporter research, with particular emphasis on some of the key emerging topics in the field.
Front Matter Copyright Contributors Preface Acknowledgments A historical overview of chloride transporter research Introduction Early CCC biology research and the emergence of neuronal Cl- transport theory The cloning of CCC genes and the elucidation of their expression patterns in the CNS Part I: Function of neuronal chloride transporters in regulating neuronal chloride homeostasis and brain development Part II: Function of KCC2 in regulating excitatory synapse development Part III: The molecular and cellular biology of neuronal chloride transporters Part IV: Linking neuronal chloride transporter deficiencies to nervous system diseases Part V: Development of therapies targeting neuronal chloride transporters Future directions References Methods for investigating the activities of neuronal chloride transporters Introduction Electroneutrality and general principles of the analysis of ion-transport activity of NKCC1 Analysis of KCC2 ion-transport activity: Electroneutrality and general principles Pioneer works to record NKCC and KCC activities K+ surrogate approaches 86Rb+ influx assay Tl+ flux assay NH4+ flux assay Measurements of resting [Cl-]i Gramicidin perforated patch clamp (GPPC) recording Recording of single GABAA and NMDA channel in cell attached configuration Other approaches to record DFGABA and DFGly Quinolinium halid-sensitive indicators Genetically encoded Cl--sensitive indicators Measurements of Cl- extrusion References The relation between neuronal chloride transporter activities, GABA inhibition, and neuronal activity Passive and active Cl- transport across membranes Expression of Cl- loaders and Cl- extruders Relation between Cl- transporters, [Cl-]i, and GABAergic actions When is a depolarization excitatory? Input and context specificity of depolarizing GABAergic inputs Some examples for excitatory and inhibitory GABAergic actions in the immature CNS References Chloride transporter activities shape early brain circuit development Introduction Ontogenesis of chloride extrusion in CNS neurons Chloride transporter activities shape the cellular actions of GABA and glycine in the developing CNS NKCC1 and GABAergic/glycinergic depolarization in immature neurons The developmental ECl- shift A perinatal ECl- shift in altricial species? GABA/glycine actions and steady-state [Cl-]i in developing neurons in vivo Chloride transporter activities affect patterned network activity during CNS development Patterned network activity in developing neural circuits A role for GABAergic depolarization in the generation of early cluster activity KCC2 and the developmental emergence of sparse firing Chloride transporter activities shape synaptic and neuronal network maturation in the developing CNS How chloride transporters may affect neuronal development Evidence for a role of chloride co-transporters in CNS development in vivo Concluding remarks References Regulation of neuronal cell migration and cortical development by chloride transporter activities Roles of chloride transporter activities in the migration of glutamatergic neuronal precursors in the developing neocortex Roles of chloride transporter activities in the migration of GABAergic neuronal precursors in the developing neocortex Roles of chloride transporters in neuronal maturation in the developing neocortex Concluding remarks: Comparison of the roles of Cl- transporters between glutamatergic and GABAergic precursors in the devel ... References KCC2 regulates dendritic spine development Introduction Development of dendritic spines KCC2 expression is enriched in dendritic spines KCC2 regulates synaptogenesis through interaction with 4.1N KCC2 regulates actin turnover in dendritic spines through interaction with β-PIX Global morphogenic role of KCC2 Reciprocal regulation of KCC2 expression and glutamatergic activity Conclusions Acknowledgments References Transport-dependent and independent functions of KCC2 at excitatory synapses Introduction KCC2 expression in the vicinity of excitatory synapses KCC2 interacts with synaptic and perisynaptic proteins KCC2 activity and the regulation of dendritic spine volume KCC2-actin interaction hinders protein diffusion in dendritic spines KCC2-dependent control of actin dynamics and long term potentiation at glutamatergic synapses Conclusions References KCC2 is a hub protein that balances excitation and inhibition Introduction Hub proteins KCC2 has a dense PPI network KCC2 is evolutionarily conserved and essential for survival KCC2 interactome is dynamic KCC2 is a functional hub protein regulating both inhibition and excitation KCC2 and GABAergic synaptic transmission KCC2 at excitatory synapses KCC2 at the nexus of excitation-inhibition balance Conclusion References Current structural view on potassium chloride co-transporters Introduction Sequence conservation between K+ Cl- cotransporters (KCCs) and Na+ K+ Cl- cotransporters (NKCCs) Expression Sequence homology Topological conservation Post-translational modifications Glycosylation Phosphorylation Cysteines conservation Topological conservation of K+ Cl- cotransporters (KCCs) and Na+ K+ Cl- cotransporters (NKCCs) Overall topology Topological organization of KCCs and NKCCs Structural homology Functional architecture of KCC2 and structural insights into ions transport Molecular structure of KCC2 Role of the N and C-termini of KCC2 Functional unit of KCC2 Co-transporters oligomerization Current ions transport picture of NKCCs and KCCs Current insights into the ion transport mechanisms of CCC related transporters Molecular structure of NKCC1 Molecular structure of KCC1 and structural comparison to NKCC1 Conclusions and perspectives Acknowledgments References Developmental expression of neuronal chloride transporters in different brain regions and sensory organs Neuronal chloride transporter family NKCC1 expression in the central nervous system Developmental expression of NKCC1 in rodents Developmental expression of NKCC1 in the human brain KCC expression in the central nervous system Developmental expression of KCC in rodents KCC1 expression patterns KCC2 expression patterns KCC3 expression patterns KCC4 expression patterns Developmental expression of KCC in the human brain Sex differences in NKCC1 and KCC2 expression Transient inhibitory switch in GABA signaling during the perinatal period NKCC1 and KCC2 expression in neuronal subtypes NKCC1 and KCC expression in sensory organs Pain and proprioception Olfactory system Auditory system Visual system Summary References Post-translational modification of neuronal chloride transporters Introduction Post-translational modification of NKCC1 and KCC2 Glycosylation Oligomerization Phosphorylation Degradation Conclusion References Protein interaction partners of neuronal chloride transporters Introduction Experimental considerations to study native-CCC containing protein complexes Subcellular fractionation Solubilization parameters Target antibody Compiling the interactome Network mapping and functional analyses Molecular organization of the CCC-MPCs Composition of CCC-MPCs Transporter core and auxiliary subunits Supercomplexes and protein networks KCC2 interactome KCC2: Ion-pump supercomplex Na+/K+-ATPase CKB KCC2: GPCR supercomplex Gq-GPCRs-Group1 mGluRs, mKAR, and others Non-Gq-GPCRs-GABABR KCC2-kainate receptor chansporter supercomplex: GluK2, Neto2 KCC2: Cytoskeletal network-4.1N, β-pix KCC2: Enzyme signaling supercomplex-Dynamic partners PKC, Src, PP1, calpain WNK, OSR, SPAK Other components of the KCC2 MPC APP AP2 and Rab11 HTT Protein associated with Myc (PAM) Neuroligin2 KCC2 functional proteomics PACSIN1 Future directions Interactome of other CCCs in the CNS Emerging KCC2-chansporter complexes Other iGluRs GABAARs Calcium channels Potassium channels Emerging KCC2-cytoskeletal complexes Emerging KCC2 complexes with other ion pumps and transporters Examining KCC2 proteomics in distinct neuronal subtypes and non-neurons Conclusions References Further reading Genetic and environmental regulators of Kcc2/KCC2 gene expression Introduction Chloride shift: Ontogenesis of Kcc2/KCC2 gene expression Signaling pathways and transcription factors that regulate Kcc2 gene expression Beyond the genome: Epigenetic regulation of Kcc2 gene expression Epilog References Further reading The involvement of neuronal chloride transporter deficiencies in epilepsy Introduction KCC2 functional modulators in health and disease NKCC1 functional modulators in health and disease Acquired epilepsy Hypoxic-ischemic encephalopathy (HIE) Inflammation Traumatic brain injury Tumor-associated epilepsy Temporal lobe epilepsy Genetic epilepsies Rett syndrome Fragile X syndrome Down syndrome Alzheimer's disease Schizophrenia Conclusion References The role of cation-chloride co-transporters in cardiovascular and respiratory abnormalities and SUDEP Introduction CCCs in heart Autonomic nervous system control of cardiac function CCC expression and function in vascular smooth muscle CCC function in blood pressure regulation CCC function in respiration CCCs in epilepsy and neurodevelopmental disease CCCs and sudden unexpected death in epilepsy References Connecting chloride transporter impairment following perinatal brain injury to cerebral palsy Cerebral palsy Chloride transporters: Critical periods Motor impairment: Spasticity and hyperreflexia Chronic pain Cognition: Executive function and higher order processing Therapeutic targets Conclusion References WNK-SPAK/OSR1-CCC signaling in ischemic brain damage Introduction Therapeutic status of ischemic stroke Ischemic core and penumbra Molecular mechanisms of stroke pathology Roles of NKCC1 in ischemic brain damage Roles of NKCC1 in the normal CNS Glutamate-mediated activation of NKCC1 contributes to neuronal damage NKCC1 in ionic dysregulation, swelling, and excitatory amino acid release in reactive astrocytes Blocking NKCC1 activity reduces brain damage in experimental ischemic stroke models NKCC1 activation in demyelination and white matter injury after ischemic stroke KCCs in the nervous system and disorders Roles of KCCs in the normal CNS Roles of KCCs in cerebral edema and damage WNK-SPAK/OSR1 signaling in ischemic brain damage WNK-SPAK/OSR1 kinases in the CNS Regulation of WNK-SPAK/OSR1-NKCC1 axis in experimental cerebral ischemic stroke WNK-SPAK/OSR1-mediated regulation of KCCs Pharmacological inhibition of WNK-SPAK/OSR1 signaling with novel inhibitors Developing WNK-SPAK binding disruptors Conclusion References Further reading Role of chloride cotransporters in the development of spasticity and neuropathic pain after spinal cord injury Spinal cord development and chloride homeostasis Ventral white matter and motoneurons Dorsal horn neurons Spinal interneurons in intermediate gray DRG neurons and primary afferents Chloride homeostasis recapitulates development after SCI Functional consequences of a shift in chloride homeostasis after SCI Spasticity Central sensitization and chronic neuropathic pain Presynaptic inhibition Alteration in the locomotor pattern Regulation of CCCs after spinal cord injury PKC-dependent phosphorylation of KCC2 BDNF-TrkB regulation of KCC2 5-HT2A regulation of KCC2 activity Calpains-dependent cleavage of KCC2 Reciprocal regulation of KCC2 and NKCC1 through WNK/SPAK/OSR1 Neuron-glia interactions Others Promising treatments for spinal cord injury Activity-based therapies, rehabilitation and the BDNF pathway Blocking NKCC1 with bumetanide Enhancing KCC2 expression and extrusion capability Conclusion Acknowledgments References Neuronal chloride homeostasis and nerve injury Peripheral nerve injury as a model and clinical conundrum Neuronal hyperexcitability: Is it only an unhappy accident? The mysterious shift in motoneuron excitability Excitatory and inhibitory synapses in regenerating motoneurons KCC2 depletion is the mechanism for altered inhibitory signaling in motoneurons Does inhibitory synaptic activity promote motor axon regeneration after PNI? Mammalian sensory neurons also become hyperexcitable and increase internal chloride after axotomy Injury-induced activation of synaptic and extrasynaptic chloride channels in sensory neurons Mammalian small sensory neurons embody the dual nature of changes in chloride Chloride regulation and development of a central hyperexcitable state contributing to pain, hyperalgesia, and allodynia Conclusions References Disruptions in chloride transporter activity in autism spectrum disorders Developmental expression of NKCC1 and KCC2, and the GABA developmental sequence The oxytocin-mediated shift on intracellular chloride levels at birth Alterations of NKCC1 and KCC2 in autism, fragile X syndrome, maternal immune activation, and Rett syndrome Bumetanide treatment of autism spectrum disorders: Reducing [Cl-]i with an NKCC1 antagonist as a novel therapeutic avenue General conclusions Conflict of interest References Chloride transporters in physiological brain development and neurodevelopmental disorders: The case of the Do ... Introduction Brain development and the role of GABA Chloride transporters in physiological brain development The role of NKCC1 and KCC2 in neuronal proliferation, migration, and network integration NKCC1 plays a key role in cell proliferation and apoptosis NKCC1 and KCC2 regulate neuronal migration NKCC1 and KCC2 regulate neuronal morphological maturation The role of NKCC1 and KCC2 in the critical period of brain plasticity Expression and role of other NKCCs and KCCs in the developing brain Chloride transporters in neurodevelopmental disorders Epilepsy Autism spectrum disorders Rett syndrome Fragile X syndrome Schizophrenia Tuberous sclerosis complex Neurodevelopmental abnormalities caused by traumatic brain injury Chloride transporters in Down syndrome Down syndrome and GABAergic transmission NKCC1 is implicated in depolarizing GABAAR signaling in Down syndrome Bumetanide treatment rescues the altered GABAergic transmission, synaptic plasticity and cognitive deficits in Ts65Dn mice Concluding remarks References Further reading Alterations in chloride transporter activity in stress and depression Stress and chloride homeostasis Maternal stress and the developmental shift in chloride reversal potential Hippocampus Amygdala Bed nucleus of the stria terminalis (BnST) Ventral tegmental area (VTA) Spinal/supraspinal pathway Hypothalamus GABAergic hypothesis of depression Stress, HPA axis dysregulation, and depression Stress and depression HPA axis dysregulation and depression Chronic stress, chloride homeostasis, and HPA axis function KCC2, HPA axis, and postpartum depression KCC2, HPA axis, and comorbid depression in epilepsy Summary References Neuronal chloride transporters in neurodegenerative diseases Introduction Mechanisms that control chloride (Cl-) homeostasis in neurons The transmembrane chloride gradient allows for neuronal inhibition by GABA Proteins that control the Cl- gradient in neurons Disruption of the chloride gradient in disease Themes of NKCC1/KCC2 regulation in disease Chloride transporters in epilepsy NKCC1/KCC2 imbalance leads to seizure Role of BDNF in epilepsy Genetic evidence links KCC2 with human epilepsy Chloride transporters in Alzheimer's disease Aberrant E/I occurred in both AD and epilepsy Abnormal BDNF may lead to altered chloride extrusion in aging and AD Regulation of KCC2 expression and function by APP Cl- homeostasis in Parkinson's disease Dopamine neurons extrude Cl- by a unique mechanism Cl- gradient alterations in non-dopaminergic cells in PD BDNF inhibits KCC2 expression to influence PD pathogenesis PD associated genetic mutations impact Cl- homeostasis Pharmacologic approaches to restore the Cl- gradient in PD Huntington's disease Cl- gradient homeostasis is disrupted in the striatum in HD Htt interacts with KCC2 to mediate toxicity in HD Htt regulates BDNF to influence KCC2 in HD Mutant Htt causes aberrant Cl- efflux in non-neuronal cells ALS causes altered Cl- gradients in motor neurons Concluding remarks Acknowledgments References Gene therapy approaches to restore chloride homeostasis for treating neuropathic pain Introduction GABA and glycine disinhibition and chloride dysregulation in neuropathic pain Role of NMDA receptor-calpain signaling in nerve injury-induced KCC2 downregulation and neuropathic pain Gene therapy for neuropathic pain Conclusions and perspectives Acknowledgments References Bumetanide to treat autism spectrum disorders: Clinical observations Introduction Clinical trials Brain functional imaging studies Discussion and general conclusions Conflict of interest References Further reading Quest for pharmacological regulators of KCC2 Introduction Structure-function relationship of KCC2: Molecular basis for the development of potent and selective KCC2-modulating compounds KCC2 in neurodevelopment: A pharmacological target with a ``timed´´ agenda From inhibition to excitation and back: The dynamic nature of KCC2 expression in the mature brain The ``fast´´ control of KCC2 activity: Post-translational modifications Conclusions and future directions Acknowledgment References Further reading Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z