دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5]
نویسندگان: Ayman El-Baz. Jasjit S. Suri
سری:
ISBN (شابک) : 0750327219, 9780750327213
ناشر: IOP Publishing
سال نشر: 2020
تعداد صفحات: 285
[286]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Neurological Disorders and Imaging Physics: Applications in dyslexia, epilepsy and Parkinson’s به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اختلالات عصبی و فیزیک تصویربرداری: کاربرد در نارساخوانی، صرع و پارکینسون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PRELIMS.pdf Preface Acknowledgements Editor biographies Ayman El-Baz Jasjit S Suri List of contributors CH001.pdf Chapter 1 Majority vote of machine learning methods for real-time epileptic seizure prediction applied on EEG pediatric data 1.1 Introduction 1.1.1 Epilepsy and epileptic seizure 1.1.2 EEG signals related to epileptic seizures 1.2 Literature review 1.3 Methodology 1.3.1 Data and data collection 1.3.2 EEG signal processing techniques 1.3.3 Meta heuristic methods 1.4 Experimental setup 1.4.1 Data setup 1.4.2 Data preparation with de-noising and feature extraction 1.4.3 Training the data—Matlab GUI 1.4.4 Data testing, processing and seizure prediction 1.5 Results 1.6 Discussion 1.7 Conclusion References CH002.pdf Chapter 2 Delineation of epileptogenic zone 2.1 Introduction 2.2 Seizure semiology 2.3 Scalp electroencephalography (EEG) and long-term video-EEG (VEEG) monitoring 2.3.1 Introduction 2.3.2 Terminology 2.3.3 Applications to epilepsy 2.3.4 Long-term video-EEG monitoring 2.4 PET-CT 2.4.1 Introduction 2.4.2 Applications to epilepsy 2.4.3 Conclusion 2.5 Magneto-electroencephalography (MEG) 2.5.1 Introduction 2.5.2 Applications and limitations 2.6 Single photon emission computed tomography (SPECT) 2.6.1 Introduction 2.6.2 Applications to epilepsy 2.7 Functional MRI (fMRI) 2.7.1 Introduction 2.7.2 Application to epilepsy 2.8 Subdural grids (SBG) 2.8.1 Introduction 2.8.2 Applications to epilepsy 2.8.3 Complications 2.8.4 Conclusions 2.9 Stereoelectroencephalography (SEEG) 2.9.1 Introduction 2.9.2 SEEG versus SBG 2.9.3 Patterns of explorations 2.9.4 Technique description 2.9.5 Surgical outcomes 2.9.6 Conclusions 2.10 Illustrative case 2.11 Conclusion References CH003.pdf Chapter 3 Dyslexia: behavioral and biological correlates and treatment 3.1 Introduction 3.2 Definitional issues 3.3 Phenotypes (behavioral markers) and genetic bases of dyslexia 3.3.1 Phenotypes 3.3.2 Genetic findings 3.4 Assessment of dyslexia 3.4.1 Family history and neurodevelopmental history 3.4.2 Educational history 3.4.3 Language 3.4.4 Motor 3.5 Phenotypic markers 3.5.1 Verbal comprehension 3.5.2 Assessing word level reading and spelling skills 3.5.3 Assessing verbal working memory components most often impaired in dyslexia [5] 3.6 Brain imaging behavioral and brain correlates 3.6.1 Brain imaging methods 3.6.2 Example brain imaging tasks linked to behavioral phenotypes outside scanner 3.6.3 Brain imaging before and after treatment 3.7 Future research directions 3.8 Assessment–instruction links for treatment 3.8.1 Educational and clinical applications 3.8.2 Biological and environmental risk factors References CH004.pdf Chapter 4 Cholesterol and oxidized cholesterol derivatives: potential biomarkers of Parkinson’s disease? 4.1 Introduction 4.2 Parkinson’s disease 4.3 Cholesterol and Parkinson’s disease 4.4 Oxysterols and the brain 4.5 Oxysterols in Parkinson’s disease 4.6 Potential involvement of oxysterols in mechanisms implicated in Parkinson’s disease 4.7 Conclusion References CH005.pdf Chapter 5 Computer assisted diagnosis of gait dynamics neurodegenerative diseases using a machine learning approach 5.1 Introduction 5.2 Methodology 5.2.1 Gait dataset 5.2.2 Feature extraction 5.2.3 Artificial neural network (ANN) 5.3 Results and discussion 5.4 Conclusion References CH006.pdf Chapter 6 Rett syndrome 6.1 Background 6.2 Clinical features 6.2.1 Congenital Rett syndrome 6.2.2 Early onset seizure variant (Hanefeld variant) 6.2.3 Preserved speech variants 6.2.4 Male variants 6.3 Important clinical symptoms and signs in Rett syndrome 6.3.1 Seizures 6.3.2 Respiratory and cardial disturbances 6.3.3 Sleep 6.3.4 Gastrointestinal disturbances 6.3.5 Communication 6.4 Genetic basis of Rett syndrome 6.5 Conclusions References CH007.pdf Chapter 7 Knowledge about epilepsy in university health students 7.1 Introduction 7.2 Cultural differences in knowledge of epilepsy 7.3 Assessment of knowledge 7.4 Future perspectives References CH008.pdf Chapter 8 Current methods and new trends in signal processing and pattern recognition for the automatic assessment of motor impairments: the case of Parkinson’s disease 8.1 Introduction 8.2 Clinical assessment of the disease 8.2.1 General symptoms and common tools for neurological evaluation of PD 8.2.2 Clinical evaluation of dysarthria 8.2.3 The modified Frenchay dysarthria assessment (m-FDA) 8.3 Automated analysis of the disease 8.3.1 Motor signals for the study of PD 8.4 Revealing features for the automatic diagnosis and monitoring of Parkinson’s disease 8.4.1 Speech 8.4.2 Gait 8.4.3 Handwriting 8.5 Existing data 8.5.1 Speech 8.5.2 Gait 8.5.3 Handwriting 8.5.4 The extended multimodal PC-GITA corpus 8.6 Automatic analysis of the extracted features 8.6.1 Performance metrics 8.7 Experiments and results 8.7.1 Experiments with speech signals 8.7.2 Experiments with gait signals 8.7.3 Experiments with handwriting signals 8.7.4 Fusion of modalities 8.8 Discussion 8.9 Future trends in PD analysis Acknowledgments References CH009.pdf Chapter 9 ‘They labelled me ignorant’: the role of neuroscience to support students with a profile of dyslexia 9.1 Introduction 9.2 Method 9.2.1 The participants 9.2.2 Data collection and analysis 9.3 Bridging the gap: linking neuroscience and educational research 9.3.1 The dyslexia debate: is dyslexia a real learning difficulty or is it a myth? 9.3.2 Paying attention to early diagnosis, support and intervention 9.3.3 ‘They labelled me ignorant’—Examinations and dyslexia 9.4 Final reflections References CH010.pdf Chapter 10 Advances in epilepsy: from gender to genetics 10.1 Introduction 10.2 Minimally invasive techniques used to achieve seizure control 10.3 Rhythms in seizure frequency 10.3.1 Hormonal regulation of seizures 10.3.2 Catamenial epilepsy 10.3.3 Progesterone 10.3.4 Estrogen 10.4 Genetic epilepsies 10.4.1 GABAAR associated epilepsies 10.4.2 Glutamate receptors associated epilepsies 10.4.3 Voltage-gated sodium channels associated epilepsies 10.4.4 Voltage-gated potassium channels associated epilepsies 10.4.5 Voltage-gated calcium channels associated epilepsies 10.4.6 Nicotinic acetyl-choline receptor associated epilepsies 10.5 Conclusions References CH011.pdf Chapter 11 Neuroimaging in Parkinson’s disease 11.1 Introduction 11.2 Neuroimaging biomarkers in Parkinson’s disease 11.3 Molecular imaging of Parkinson’s disease 11.3.1 Dopamine 11.3.2 Serotonin 11.3.3 Cholinergic dysfunction 11.3.4 Noradrenergic function 11.4 Imaging midbrain structural changes in PD 11.4.1 Magnetic resonance imaging techniques 11.4.2 Transcranial sonography (TCS) 11.5 Positron emission tomography (PET) 11.5.1 Presynaptic and postsynaptic dopaminergic imaging 11.5.2 Assessment of cerebral glucose metabolism 11.6 Single photon emission computed tomography in Parkinsonian disorders (SPECT) 11.7 Diffusion tensor magnetic resonance imaging (DTI) 11.8 Proton magnetic resonance spectroscopy (1H-MRS) References