دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Chang S. Nam (editor)
سری: Cognitive Science and Technology
ISBN (شابک) : 3030347834, 9783030347833
ناشر: Springer-Nature New York Inc
سال نشر: 2020
تعداد صفحات: 473
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Neuroergonomics: Principles and Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نورو ارگونومی: اصول و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نور ارگونومی: اصول و عمل به پزشکان دانشگاهی و
دانشجویان فارغ التحصیل یک کتاب راهنما ارائه می دهد که کمک
قابل توجهی در تحقیقات مرتبط با عوامل انسانی و ارگونومی،
تعامل انسان و کامپیوتر، مهندسی سیستم های انسان و انسان
خواهد بود. علوم اعصاب شناختی.
Neuroergonomics: Principles and Practice provides
academic practitioners and graduate students with a single
go-to handbook that will be of significant assistance in
research associated with human factors and ergonomics,
human-computer interaction, human-systems engineering and
cognitive neuroscience.
Foreword Preface Contents Editor and Contributors Introduction An Introduction to Neuroergonomics: From Brains at Work to Human-Swarm Teaming 1 Introduction 2 Before and After Neuroergonomics 3 Where to from Here? References Brain Basics in Neuroergonomics 1 Introduction 2 An Introduction to Neuroanatomy 2.1 The Cerebrum 2.2 The Cortex 2.3 Subcortical Regions 2.4 The Brain Stem 2.5 The Cerebellum 3 A Cellular Understanding of the Brain 3.1 Neurons 3.2 Action Potentials 3.3 Glia 3.4 Blood Supply to the Brain 4 Conclusions References Neuroimaging Methods in Neuroergonomics The EEG Cookbook: A Practical Guide to Neuroergonomics Research 1 Introduction 2 Power Analysis 2.1 Why Perform a Power Analysis? 2.2 Ingredients of a Power Analysis 2.3 Effect Size 2.4 Canned Effect Sizes 2.5 Free Power Analysis Tools 3 Data Preprocessing 4 Reporting Guidelines 5 Conclusion References Functional Near-Infrared Spectroscopy (fNIRS) in Neuroergonomics 1 Introduction 2 Design and Implementation of fNIRS 2.1 How Does fNIRS Work? 2.2 What Does fNIRS Measure? 2.3 Types of fNIRS 3 Applications of fNIRS in Neuroergonomics Research 3.1 Driving 3.2 Mental Workload 3.3 Motor Functions 3.4 Decision-Making 4 Summary and Future Directions References Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Neuroergonomists 1 Introduction 2 Design and Implementation of tDCS 2.1 How Does tDCS Work? 2.2 Parameter Configurations 2.3 The Way to Use the tDCS System 2.4 Safety Concerns and Issues 3 State-of-the-Art of tDCS-Based Neuroergonomics Research 3.1 Motor Functions 3.2 Cognitive Functions 4 Summary and Future Directions References Computational Approaches to Neuroergonomics Adaptive Control of Thought-Rational (ACT-R): Applying a Cognitive Architecture to Neuroergonomics 1 Introduction 2 Overview of ACT-R 2.1 ACT-R Modules 2.2 ACT-R Buffers 2.3 Sub-symbolic Level in ACT-R 3 Cognitive Modeling Using ACT-R 3.1 Behavioral Data-Based ACT-R Modeling 3.2 Neural Data-Based ACT-R Modeling 4 Future Directions of ACT-R for Neuroergonomics Research References Deep Learning Techniques in Neuroergonomics 1 Introduction 2 Advancements of Deep Learning Techniques 3 Deep Learning Families 3.1 Artificial Neural Network (ANN) 3.2 Multilayer Perceptron (MLP) 3.3 Deep Belief Network (DBN) 3.4 Convolutional Neural Network (CNN) 3.5 Recurrent Neural Networks (RNN) 4 Applications 4.1 Mental Workload 4.2 Motor Imagery 4.3 Driving Safety 4.4 Emotion Recognition 5 Conclusions and Future Directions References Dynamic Causal Modeling (DCM) for EEG Approach to Neuroergonomics 1 Introduction 2 Fundamentals of DCM for EEG 2.1 Neuronal Model and Electromagnetic Model 2.2 State Equation and Observer Equation 2.3 Bayesian Inference 3 Applications of DCM for EEG 3.1 Cognitive Neuroergonomics 3.2 Physical Neuroergonomics 4 Recommendations for Future DCM-Based Neuroergonomics Research References Neuroergonomics Assessments of Cognitive and Physical Performance Physical Activity and Sedentary Behavior Influences on Executive Function in Daily Living 1 Introduction: Physical Activity and Public Health 2 Physical Activity and Executive Function 2.1 Physical Activity, Task Switching, and Response Inhibition 2.2 Physical Activity and Working Memory 3 Physical Fitness and Executive Function 3.1 Physical Fitness and Response Inhibition 4 Sedentary Behaviors and Cognition 5 Mediators and Moderators of Executive Function 6 Exercise and Measurement Issues 7 Future Directions 7.1 Virtual Reality 7.2 Sedentary Behavior 7.3 Physical Activity and Cognitive Reserve 8 Implications of Using FNIRs to Study the Effects of Human Movement References Neuroergonomics and Its Relation to Psychophysiology 1 The Definition and Scope of Neuroergonomics 2 Challenges in Neuroergononic Methods 3 Methods of Psychophysiology 4 The Advantages of Psychophysiology Compared to Neuroimaging for Measuring Arousal 5 Applications to Product Design and Evaluation References “Hello Computer, How Am I Feeling?”, Case Studies of Neural Technology to Measure Emotions 1 Introduction 2 Neural Technology-Based Measures of Emotions 3 Case Study 1: Affective Brain–Computer Music Interfacing 3.1 Introduction 3.2 Outline 3.3 Affective State Detection 3.4 Evaluation 3.5 Results 3.6 Discussion 4 Case Study 2: Driving 4.1 Background 4.2 Method 4.3 Data Collected 4.4 Analysis Techniques 4.5 Results 5 Conclusions 6 Conclusions and Future Research Directions References The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages 1 Introduction 1.1 Developing Views on Skill Automaticity 1.2 Extended Practice Requirements for Skill Automaticity 1.3 Cognitive Characteristics of Skill Automaticity 1.4 Cognitive Framework for Skill Automatization 1.5 Historical and Contemporary Views on Neural Changes Associated with Skill Automaticity 2 Neural Changes from Early Skill Learning to Automatization 2.1 Fast and Slow Skill Learning Stages 2.2 Differentiating Learning-Related Neural Changes Based on Skill Function and Performance Strategies 2.3 Brain Activity Underlying Automated Skill Performance 3 Expediting Automaticity at the Cost of Learning: A Cautionary Tale from the Contextual Interference Effect 3.1 Early Performance Automatization Under Repetitive Training 3.2 Performance Automatization Versus Learning 3.3 Neural Correlates of the CI Effect 4 Summary References Approaches for Inserting Neurodynamics into the Training of Healthcare Teams 1 Team Neurodynamics 1.1 Team Neurodynamics: An Information Organization Framework for Modeling Team Performance 1.2 Modeling Team Neurodynamics 1.3 Identifying the Contributions of Team Members to the Team Organization 2 Neurodynamics of Simulation Debriefings 2.1 How Well Do Team Neurodynamics from Simulations Reflect Those from Live Patient Encounters? 3 Key Points Appendix 1: Processing EEG Data Streams References The Neuroergonomics of Music Proficiency and Performance 1 Introduction 2 Historical Perspective 3 Context Specificity in Musical Behavior 4 Neuroergonomics of Musical Behavior—Cognitive Specialization in Music Proficiency and Talent 5 Discussion and Conclusions References Brain-Computer Interfaces and Neuroergonomics Hybrid EEG–fTCD Brain–Computer Interfaces 1 Introduction 2 Visual Presentation Paradigms 2.1 Flickering MR/WG-Based Paradigm 2.2 Motor Imagery-Based Paradigm 3 Methods 3.1 Data Acquisition 3.2 Participants 3.3 Feature Extraction and Fusion 3.4 Feature Selection 3.5 Classification and Performance Measures 3.6 Evaluation of the Effectiveness of the Hybrid System 3.7 Temporal Analysis to Identify Trial Length 4 Results and Discussions 5 Conclusions References Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation 1 Introduction 1.1 How Do Brain–Computer Interfaces (BCIs) Work? 1.2 Current Spinal Cord Injuries (SCIs) Rehabilitation 1.3 Advantages of Using BCI Systems for Spinal Cord Injuries (SCIs) 2 Motor Imagery Ability in Those with SCI 2.1 BCIs and Virtual Reality (VR) 2.2 BCIs and Exoskeletons/Neuroprosthesis 3 Challenges of Using BCI Systems for Spinal Cord Injuries 4 Summary References A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation 1 Introduction 2 FES Systems for SMR-Based BCI 2.1 Systematic Review Procedure 2.2 FES Systems in Current Research 2.3 FES Electrode Placement and Parameters in Current Research 2.4 Limitations of Current Research 3 Review on SMR-Based BCIs for FES 3.1 Systematic Review Procedure 3.2 MI Instruction and Tasks in Current Research 3.3 Signal Processing for SMR-Based BCIs 3.4 Limitations of Current Research 4 Summary References Everyday and Emerging Applications Neuroergonomics Behind the Wheel: Neural Correlates of Driving 1 Introduction 2 Neuroergonomics Research of Car Driving 2.1 fMRI-Based Driving Research 2.2 MEG-Based Driving Research 2.3 EEG-Based Driving Research 2.4 fNIRS-Based Driving Research 3 Common Brain Areas and Activation Patterns While Driving 4 Organizational Planning Levels 4.1 Strategical Level 4.2 Tactical Level 4.3 Operational Level 5 Summary and Future Directions References Fundamentals and Emerging Trends of Neuroergonomic Applications to Driving and Navigation 1 Introduction: Cognitive Functions in Driving and Navigation 2 Attention in Driving and Navigation 2.1 Fundamentals of Attention 2.2 Neuroergonomic Application to Driver Attention, Attention Failures, and Fatigue 3 Situation Awareness (SA) in Driving and Navigation 3.1 Fundamentals of SA 3.2 Neuroergonomic Application to SA and Judgment 4 Intent in Driving and Navigation 4.1 Action Plan and Intent in Driving Under Uncertainty 5 Neuroergonomics Applied to Intent Recognition and Action Prediction 6 Mental Workload and Special Driving Population 7 Discussion References Neuroergonomic Solutions in AR and VR Applications 1 Introduction 2 Ergonomic Devices 2.1 VR-Compatible EEG Headset 2.2 EOG Glasses 3 Measuring EEG While Exploring VR 3.1 Data Collection 3.2 Assessment of Signal Quality 3.3 Handling Artefacts 4 Capturing Eye Activity 4.1 Data Collection 4.2 Signal Quality and Fit 4.3 Identifying Eyeblinks 5 Discussion 5.1 VR Solution That Captures EEG 5.2 AR Glasses That Capture EOG 6 Summary References Neuroergonomic Applications in Information Visualization 1 Introduction 2 Evaluation of InfoVis 3 Noninvasive Functional Brain Monitoring Techniques in InfoVis 4 Neuroergonomic Metrics of Information Visualization 5 Neuroadaptive Interfaces for InfoVis 6 Conclusion References Neural Correlates and Mechanisms of Trust 1 Introduction 2 Neurobiological Correlates of Trust 2.1 Oxytocin 2.2 Testosterone 3 Spatial Neural Dynamics of Trust 3.1 Prefrontal Cortex (PFC) 3.2 Insula 3.3 Caudate 3.4 Amygdala 3.5 Anterior Paracingulate Cortex (PCC) 4 Summary References Conclusion Conclusion: Moving Forward in Neuroergonomics Author Index Subject Index