ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part VII

دانلود کتاب پردازش اطلاعات عصبی: بیست و نهمین کنفرانس بین المللی، ICONIP 2022، رویداد مجازی، 22 تا 26 نوامبر 2022، مجموعه مقالات، قسمت هفتم

Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part VII

مشخصات کتاب

Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part VII

ویرایش:  
نویسندگان: , , , ,   
سری: Communications in Computer and Information Science, 1794 
ISBN (شابک) : 981991647X, 9789819916474 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 602
[603] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 58 Mb 

قیمت کتاب (تومان) : 44,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, November 22–26, 2022, Proceedings, Part VII به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پردازش اطلاعات عصبی: بیست و نهمین کنفرانس بین المللی، ICONIP 2022، رویداد مجازی، 22 تا 26 نوامبر 2022، مجموعه مقالات، قسمت هفتم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پردازش اطلاعات عصبی: بیست و نهمین کنفرانس بین المللی، ICONIP 2022، رویداد مجازی، 22 تا 26 نوامبر 2022، مجموعه مقالات، قسمت هفتم

مجموعه چهار جلدی CCIS 1791، 1792، 1793 و 1794، مجموعه مقالات داوری بیست و نهمین کنفرانس بین المللی پردازش اطلاعات عصبی، ICONIP 2022 را تشکیل می دهد که به صورت یک رویداد مجازی، 22 تا 26 نوامبر 2022 برگزار شد. 213 مقاله ارائه شده در مقالات مجموعه به دقت بررسی و از بین 810 مورد ارسالی انتخاب شد. آنها در بخش های موضوعی به شرح زیر سازماندهی شدند: نظریه و الگوریتم ها. علوم اعصاب شناختی؛ محاسبات انسان محور؛ و برنامه های کاربردی هدف کنفرانس ICONIP ارائه یک انجمن بین المللی پیشرو برای محققان، دانشمندان و متخصصان صنعت است که در علوم اعصاب، شبکه های عصبی، یادگیری عمیق و زمینه های مرتبط کار می کنند تا ایده های جدید، پیشرفت و دستاوردهای خود را به اشتراک بگذارند.


توضیحاتی درمورد کتاب به خارجی

The four-volume set CCIS 1791, 1792, 1793 and 1794 constitutes the refereed proceedings of the 29th International Conference on Neural Information Processing, ICONIP 2022, held as a virtual event, November 22–26, 2022. The 213 papers presented in the proceedings set were carefully reviewed and selected from 810 submissions. They were organized in topical sections as follows: Theory and Algorithms; Cognitive Neurosciences; Human Centered Computing; and Applications. The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements.



فهرست مطالب

Preface
Organization
Contents – Part VII
Applications II
An Interpretable Multi-target Regression Method for Hierarchical Load Forecasting
	1 Introduction
	2 Methods
		2.1 Data and Problem Definition
		2.2 Correlation Coefficient Calculating
		2.3 Dynamically Adjusted LightGBM Regressor Chain
		2.4 SHapley Additive exPlanation (SHAP)
	3 Experiment Framework
	4 Results and Discussions
		4.1 Correlation Matrix
		4.2 Model Interpretability
	5 Conclusion and Future Work
	References
Automating Patient-Level Lung Cancer Diagnosis in Different Data Regimes
	1 Introduction
	2 Related Works
	3 Method
		3.1 DeepLung
		3.2 MilLung
		3.3 AutoLung
	4 Experimental Setup
		4.1 Dataset
		4.2 Preprocessing and Augmentation
		4.3 Hyperparameters of the Models
	5 Results
		5.1 Malignancy Classification or Regression?
		5.2 Comparison with Experienced Doctors
		5.3 Explainability
	6 Conclusions
	References
Multi-level 3DCNN with Min-Max Ranking Loss for Weakly-Supervised Video Anomaly Detection
	1 Introduction
	2 Proposed Method
		2.1 Divide Video into Segments
		2.2 Multi-level 3DCNN Feature Extraction
		2.3 Temporal Modeling
		2.4 Anomaly Detection
		2.5 Network Optimization with Min-Max Ranking Loss
	3 Experiments
		3.1 Dataset Description and Evaluation Metric
		3.2 Implementation Details
		3.3 Experimental Analysis
	4 Conclusion
	References
Automatically Generating Storylines from Microblogging Platforms
	1 Introduction
	2 Related Work
	3 Methodology
		3.1 Event Extraction
		3.2 Story Branch Construction
		3.3 Storyline Generation
	4 Experiment
		4.1 Performance of Event Extraction
		4.2 Performance of Story Branch Construction
		4.3 Performance of Storyline Generation
	5 Conclusion
	References
Improving Document Image Understanding with Reinforcement Finetuning
	1 Introduction
	2 Related Work
	3 Background
	4 Method
		4.1 Problem Formulation for Reinforcement Finetuning
		4.2 Reward Functions
		4.3 Transfer Learning with Ground-Truth Labels
		4.4 Expert Feedback as Reward
		4.5 Training Algorithm
	5 Settings and Evaluation Metrics
	6 Experimental Results
		6.1 Transfer Learning with Limited Data
		6.2 Learning with Expert Feedback
	7 Conclusion
	References
MSK-Net: Multi-source Knowledge Base Enhanced Networks for Script Event Prediction
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Methodology
		4.1 Question Encoder
		4.2 Knowledge Searcher
		4.3 Knowledge Encoder
		4.4 Result Predictor
		4.5 Training Object
	5 Experiments
		5.1 Dataset
		5.2 Baselines
		5.3 Experimental Settings
	6 Results and Analysis
		6.1 Overall Results
		6.2 Comparative Experiments
	7 Conclusion and Future Work
	References
Vision Transformer-Based Federated Learning for COVID-19 Detection Using Chest X-Ray
	1 Introduction
	2 Related Work
	3 Chest X-Ray Findings in COVID-19
	4 Material and Methods
		4.1 Overview of ViT Architecture
		4.2 The Proposed Federated Learning Overview
	5 Experimental Result and Analysis
		5.1 Dataset Preparation
		5.2 Results
		5.3 Results on IID Data
		5.4 Results on Non-IID Data
		5.5 Results on Unbalanced Data
		5.6 Comparisons with Existing Methods
	6 Conclusion and Future Work
	References
HYCEDIS: HYbrid Confidence Engine for Deep Document Intelligence System
	1 Introduction
	2 Background
	3 Methodology
		3.1 Multi-modal Conformal Predictor (MCP)
		3.2 Variational Cluster-Oriented Anomaly Detector (VCAD)
		3.3 Hybrid Confidence Estimation
	4 Experiments
		4.1 Datasets and Evaluation Metrics
		4.2 Experimental Baselines
		4.3 Benchmarking Results
	5 Conclusion
	References
Multi-level Network Based on Text Attention and Pose-Guided for Person Re-ID
	1 Introduction
	2 Method
		2.1 Image Feature Extraction
		2.2 Text Feature Extraction
		2.3 Cross-Modal Projection Matching
	3 Experimental
		3.1 Experimental Setup
		3.2 Experimental Details
		3.3 Comparison with State-of-the-Art Methods
		3.4 Ablation Studies
		3.5 Visual Analysis
	4 Summary
	References
Sketch Image Style Transfer Based on Sketch Density Controlling
	1 Introduction
	2 Related Works
	3 Method
		3.1 Overall Pipeline
		3.2 Sketch Density Extraction and Encoding
		3.3 Style Encoder
		3.4 Density Controlled Style Transfer
	4 Data Construction
	5 Experiments
		5.1 Implementation Details
		5.2 Ablation Study
		5.3 Comparison with SOTA Methods
	6 Conclusion
	References
VAE-AD: Unsupervised Variational Autoencoder for Anomaly Detection in Hyperspectral Images
	1 Introduction
	2 Methodology
		2.1 Dimensionality Reduction Using PCA
		2.2 Background Reconstruction Using VAE
		2.3 Anomaly Map Construction
	3 Experimental Setups
		3.1 Dataset
		3.2 Evaluation Criteria
	4 Results and Discussion
		4.1 Analysis of Dimensionality Reduction Process
		4.2 Analysis of Detection Map Construction Using Gaussian Mixture Model
		4.3 Comparison with State of the Art Methods
	5 Conclusion
	References
DSE-Net: Deep Semantic Enhanced Network for Mobile Tongue Image Segmentation
	1 Introduction
	2 Relate Work
	3 Proposed Method
		3.1 Lightweight Feature Extraction Module
		3.2 Deep Semantic Enhanced Module
		3.3 Decoder
		3.4 Loss Function
	4 Experimental Results
		4.1 Dataset
		4.2 Evaluation Metrics
		4.3 Implementation Details
		4.4 Comparison with the State-of-the-Art
	5 Conclusion
	References
Efficient-Nets and Their Fuzzy Ensemble: An Approach for Skin Cancer Classification
	1 Introduction
	2 Related Works
	3 Dataset
	4 Methods
		4.1 Reward Function
		4.2 Ensemble: Choquet Fuzzy Integral
	5 Results
	6 Conclusion and Future Work
	References
A Framework for Software Defect Prediction Using Optimal Hyper-Parameters of Deep Neural Network
	1 Introduction
	2 Related Research
	3 Proposed Approach
		3.1 Dataset Imbalance Handling and Scaling
		3.2 Grid Search Based Hyper-Parameter Optimization Technique (GSBO)
	4 Experimental Setup
		4.1 Research Questions
	5 Results and Discussion
		5.1 Answers of RQs
	6 Conclusion and Future Scope
	References
Improved Feature Fusion by Branched 1-D CNN for Speech Emotion Recognition
	1 Introduction
	2 Related Work
	3 Motivation
	4 Methodology
		4.1 Proposed Improved Method
		4.2 Data Augmentation
		4.3 Feature Extraction
		4.4 1-D CNN Architecture
		4.5 Model Evaluation
	5 Datasets
	6 Results and Discussions
		6.1 Environment and Implementation Details
		6.2 Loss and Accuracy Curves for Emo-DB and TESS
		6.3 Classification Report for Emo-DB and TESS
		6.4 Comparative Analysis for Emo-DB and TESS
	7 Conclusion
	References
A Multi-modal Graph Convolutional Network for Predicting Human Breast Cancer Prognosis
	1 Introduction
	2 Proposed Work
		2.1 Data Set
		2.2 Graph Convolutional Network(GCN)
		2.3 Steps of Proposed Technique (MGCN)
		2.4 Experimental Setup
		2.5 Objective Function
	3 Experimental Results
		3.1 Evaluation Measures
		3.2 Results Using 10 Fold Cross-Validation Setting
		3.3 Comparison with Other Prediction Methods
		3.4 Discussion
	4 Conclusion
	References
Anomaly Detection in Surveillance Videos Using Transformer Based Attention Model
	1 Introduction
	2 Related Work
	3 Proposed Method
		3.1 Stage 1 (Feature Extraction)
		3.2 Stage 2 (Attention Layer)
		3.3 Stage 3 (Anomaly Detection)
	4 Experiments
		4.1 Dataset Description
		4.2 Evaluation Metric
		4.3 Implementation Details
		4.4 Result Analysis
	5 Conclusion
	References
Change Detection in Hyperspectral Images Using Deep Feature Extraction and Active Learning
	1 Introduction
	2 Related Research
	3 Proposed Method
		3.1 Unsupervised Pre-training of Sliding Convolutional Autoencoder
		3.2 Active Re-training of Twin Encoder Change Detector (TECD) Model
	4 Results
		4.1 Dataset Description
		4.2 Experiments
	5 Conclusion
	References
TeethU2Net: A Deep Learning-Based Approach for Tooth Saliency Detection in Dental Panoramic Radiographs
	1 Introduction
	2 Methods
		2.1 Network Architecture
		2.2 Loss Function
		2.3 Implementation Details
		2.4 Dataset
		2.5 Evaluation Metrics
	3 Results
		3.1 Quantitative Analysis
		3.2 Qualitative Analysis
	4 Conclusion and Future Work
	References
The EsnTorch Library: Efficient Implementation of Transformer-Based Echo State Networks
	1 Introduction
	2 Related Works
	3 ESNs for Text Classification
	4 EsnTorch
		4.1 Dataset
		4.2 Model
		4.3 Training
		4.4 Evaluation
		4.5 Deep ESNs
	5 Conclusion
	References
Wine Characterisation with Spectral Information and Predictive Artificial Intelligence
	1 Introduction
	2 Related Work
	3 The Color of GJ/WINE
	4 Grape Juice Tasting
		4.1 Data Collection
		4.2 Prediction Results
	5 Juice (or Grape) Origin Prediction
		5.1 Data Collection
		5.2 Prediction Results
	6 Wavelength Importance
	7 Conclusions
	References
MRCE: A Multi-Representation Collaborative Enhancement Model for Aspect-Opinion Pair Extraction
	1 Introduction
	2 Related Works
	3 Our Approach
		3.1 Task Definition
		3.2 Network Architecture
		3.3 Recurrent Interactive Units
		3.4 Joint Training
		3.5 Inference Layer
	4 Experiments
		4.1 Datasets and Experimental Settings
		4.2 Baselines
		4.3 Main Results
		4.4 Model Analysis
		4.5 Case Study
	5 Conclusion
	References
Diverse and High-Quality Data Augmentation Using GPT for Named Entity Recognition
	1 Introduction
	2 Related Work
		2.1 Data Augmentation
		2.2 Prompt Learning
	3 Our Method
		3.1 Data Preprocessing
		3.2 Data Generation
	4 Experiments
		4.1 Dataset
		4.2 Evaluation
		4.3 Main Result
	5 Analysis
	6 Conclusion and Future Work
	References
Transformer-Based Original Content Recovery from Obfuscated PowerShell Scripts
	1 Introduction
	2 Related Works
	3 Deobfuscation
	4 Dataset
	5 Model
	6 Training
	7 Results
	8 Conclusion
	References
A Generic Enhancer for Backdoor Attacks on Deep Neural Networks
	1 Introduction
	2 Preliminaries
		2.1 Backdoor Attacks
		2.2 Backdoor Defenses
	3 Methodology
		3.1 Threat Model
		3.2 Intuition
		3.3 Proposed Backdoor Enhancer
	4 Experiments
		4.1 Experiment Setting
		4.2 Results and Analysis
	5 Ablation Studies
		5.1 Effect on STRIP FAR by Varying FRR
		5.2 Effect of Varying Label Smoothing Factor
		5.3 Effect of Varying Activation Suppression Factor
	6 Conclusion
	References
Attention Based Twin Convolutional Neural Network with Inception Blocks for Plant Disease Detection Using Wavelet Transform
	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Results and Discussion
		4.1 Performance Evaluation
		4.2 Ablation Study
	5 Conclusions and Future Work
	References
A Medical Image Steganography Scheme with High Embedding Capacity to Solve Falling-Off Boundary Problem Using Pixel Value Difference Method
	1 Introduction
	2 PVD Method
	3 Proposed Methodology
	4 Embedding Algorithm
	5 Extraction Algorithm
		5.1 Experimental Results
	6 Comparison
	7 Conclusion
	References
Deep Ensemble Architecture: A Region Mapping for Chest Abnormalities
	1 Introduction
	2 Related Work
	3 Data Exploration
		3.1 Weakly Supervised Dataset
		3.2 Database of Region Mapping
	4 Deep Ensemble Architecture
		4.1 Localization
		4.2 Region Mapping
	5 Experiments and Results
	6 Conclusion
	References
Privacy-Preserving Federated Learning for Pneumonia Diagnosis
	1 Introduction
	2 Literature Survey
	3 Methodology
		3.1 Federated Learning
		3.2 Model Architecture
		3.3 Dataset Preprocessing
	4 Results and Discussion
		4.1 Data Analysis
		4.2 Performance Analysis
	5 Conclusion and Future Scope
	References
Towards Automated Segmentation of Human Abdominal Aorta and Its Branches Using a Hybrid Feature Extraction Module with LSTM
	1 Introduction
	2 Method
		2.1 Patch Embedding and Downsampling Module
		2.2 Hybrid Feature Module
		2.3 Decoder Part
		2.4 Loss
		2.5 Performance Evaluation Metrics
	3 Results and Discussion
		3.1 Clinical Data and Hardware
		3.2 Experiment Results and Discussion
	4 Conclusion
	References
P-LSTM: A Novel LSTM Architecture for Glucose Level Prediction Problem
	1 Introduction
	2 Related Work
	3 Methodology
		3.1 A Novel Activation Function: Motivation
		3.2 Structure of P-LSTM
		3.3 Handling the Parameter of the Elliott Activation
		3.4 Causality Analysis
	4 Dataset and Experiment
		4.1 Dataset
		4.2 LSTM Model and Evaluation
		4.3 Results
	5 Conclusion
	References
Wide Ensemble of Interpretable TSK Fuzzy Classifiers with Application to Smartphone Sensor-Based Human Activity Recognition
	1 Introduction
	2 On Interpretable Zero-Order TSK Fuzzy Classifiers
	3 The Proposed Classifier WEIFC
		3.1 The Proposed Wide Structure
		3.2 B. Learning Algorithm and Computational Complexity
	4 Experimental Results
		4.1 Datasets and Parameter Settings
		4.2 Results and Discussions
	5 Conclusion
	References
Prediction of the Facial Growth Direction: Regression Perspective
	1 Introduction
	2 Related Literature
	3 Facial Growth Prediction
		3.1 Face Normalization and Problem Definition
		3.2 Summary of Our Previous Results
	4 Regression Analysis
		4.1 Experimental Setup
		4.2 How Well Cephalogram-Derived Features Predict FG Changes?
		4.3 Further Analysis
	5 Conclusions
	References
A Methodology for the Prediction of Drug Target Interaction Using CDK Descriptors
	1 Introduction
	2 Computation Approaches to DTI Predictions
	3 Materials and Methods
		3.1 Dataset Description
		3.2 Drug Feature Representation
		3.3 Protein Feature Representation
	4 Proposed Methodology
		4.1 CatBoost
	5 Evaluation Parameters
	6 Performance Evaluation
		6.1 Comparison with Previous Methods
	7 Conclusion
	References
PSSM2Vec: A Compact Alignment-Free Embedding Approach for Coronavirus Spike Sequence Classification
	1 Introduction
	2 Related Work
	3 Proposed Approach
		3.1 PSSMFreq2Vec
		3.2 PSSM2Vec
	4 Experimental Setup
		4.1 Evaluation Metrics
		4.2 Baseline Models
	5 Results and Discussion
		5.1 Classification Results
		5.2 Evaluating t-SNE
		5.3 Statistical Analysis
	6 Conclusion
	References
An Optimized Hybrid Solution for IoT Based Lifestyle Disease Classification Using Stress Data
	1 Introduction
	2 Related Work
	3 Material and Methods
		3.1 Dataset Description and Hardware Used for Data Acquisition
		3.2 Data Preparation
		3.3 Implementation of the Proposed Model
	4 Result and Discussion
		4.1 Accuracy of Various Classifier Using Feature Selection Techniques
	5 Conclusion and Future Scope
	References
A Deep Concatenated Convolutional Neural Network-Based Method to Classify Autism
	1 Introduction
	2 Related Work
	3 Proposed Model
		3.1 Dataset
		3.2 Methodology
	4 Result and Discussion
	5 Conclusions
	References
Deep Learning-Based Human Action Recognition Framework to Assess Children on the Risk of Autism or Developmental Delays
	1 Introduction
	2 Material and Methods
		2.1 Objective
		2.2 Dataset
		2.3 Methods
	3 Experiments and Results
		3.1 Development of DL Models
		3.2 Validation of DL Models
	4 Discussion
	5 Conclusion and Future Scope
	References
Dynamic Convolutional Network for Generalizable Face Anti-spoofing
	1 Introduction
	2 Related Work
		2.1 Face Anti-spoofing
		2.2 Dynamic Convolutional Layer
	3 Methodology
		3.1 Overview
		3.2 Dynamic Domain Convolution Generator
		3.3 Asymmetric Center Mining
	4 Experiments
		4.1 Experimental Settings
		4.2 Comparison Results
		4.3 Ablation Study
		4.4 Visualization and Analysis
	5 Conclusion
	References
Challenges of Facial Micro-Expression Detection and Recognition: A Survey
	1 Introduction
	2 Major Challenges During Micro-Expression Recognition
		2.1 Climate Deviation
		2.2 The Unconstrained and Refined Motion of Facial Movement
		2.3 Imbalanced Dataset for Normal Situations
		2.4 In the Implementation of Deep Learning (High Level Representation)
	3 Micro-Expression Recognition Process
		3.1 Preprocessing
		3.2 Face Detection
		3.3 Face Registration
		3.4 Motion Magnification
		3.5 Temporal Normalization
	4 Feature Extraction
		4.1 Feature Detection
		4.2 Feature Representation
	5 Limitations of Existing Methods of Feature Descriptors
	6 Conclusion
	References
Biometric Iris Identifier Recognition with Privacy Preserving Phenomenon: A Federated Learning Approach
	1 Introduction
	2 Literature Review
	3 Methodology
		3.1 Dataset
		3.2 Data Preparation
		3.3 Privacy Preserving Model Training Approach: Federated Learning
		3.4 Feature Extraction
		3.5 Classification
	4 Results and Discussion
	5 Conclusion
	References
Traffic Flow Forecasting Using Attention Enabled Bi-LSTM and GRU Hybrid Model
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Performance Evaluation
	5 Conclusion and Future Work
	References
Commissioning Random Matrix Theory and Synthetic Minority Oversampling Technique for Power System Faults Detection and Classification
	1 Introduction
	2 Literature Survey
	3 Approach for Contingency Data Generation and Detection
		3.1 Application of RMT and SMOTE
	4 Proposed Methodology: Detection and Classification of Line Faults
	5 Experiment and Analysis
		5.1 Classification of Power System Faults Using Binary Classifier
		5.2 Classification of Power System Faults Using Rule Based Decision Tree
	6 Conclusion
	References
Deep Reinforcement Learning with Comprehensive Reward for Stock Trading
	1 Introduction
	2 Method
		2.1 Policy Network Model
		2.2 Policy Network Optimization by RL
		2.3 Proposal Reward Function
		2.4 Sentiment Analysis of Stock
	3 Experiment
		3.1 Evaluation Criterion
		3.2 Implentation Details
		3.3 Results and Discussion
	4 Conclusion
	References
Deep Learning Based Automobile Identification Application
	1 Introduction
	2 Convolutional Neural Network and ITS Extensions
		2.1 Convolutional Neural Network
		2.2 Deep Residual Network
	3 Car Classification and Detection
	4 Models
	5 Experiment and Discussion
		5.1 Experimental Setup
		5.2 Experimental Results
		5.3 Evaluation and Application
	6 Conclusion
	References
Automatic Firearm Detection in Images and Videos Using YOLO-Based Model
	1 Introduction
		1.1 Yolo Algorithm
	2 Related Work
	3 Methodology
		3.1 Analysis
	4 Conclusion
	References
Author Index




نظرات کاربران