دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jasjit S. SuriS, Ayman S. El-Baz سری: ISBN (شابک) : 0128244216, 9780128244210 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 345 [347] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2: Diagnosis and Clinical Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های مهندسی عصبی برای اختلال طیف اوتیسم، جلد 2: تشخیص و تجزیه و تحلیل بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی عصبی برای اختلال طیف اوتیسم، جلد دوم: تشخیص و تجزیه و تحلیل بالینی آخرین پیشرفتها در مهندسی عصبی و مهندسی زیست پزشکی را که در تشخیص بالینی و درمان اختلال طیف اوتیسم اعمال میشود، ارائه میکند. ASD). پیشرفتها در نقش تصویربرداری عصبی، طیفسنجی رزونانس مغناطیسی، MRI، fMRI، DTI، تجزیه و تحلیل ویدیویی رفتارهای حسی-حرکتی و اجتماعی، و تجزیه و تحلیل دادههای مناسب مفید برای تشخیص بالینی و کاربردهای تحقیقاتی اختلال طیف اوتیسم، از جمله مطالعات موردی مرتبط، پوشش داده شدهاند. کاربرد ارزیابی سیگنال مغز، تجزیه و تحلیل EEG، مدل فازی و تجزیه و تحلیل فراکتال زمانی سیگنال های BOLD حالت استراحت و سیگنال های مغزی نیز ارائه شده است.
راهنمای بالینی برای پزشکان عمومی ارائه شده است. همراه با انواع تکنیک های ارزیابی مانند طیف سنجی تشدید مغناطیسی. این کتاب در دو جلد شامل جلد اول: تکنیک های تصویربرداری و تجزیه و تحلیل سیگنال شامل دو بخش اوتیسم و تصویربرداری پزشکی و اوتیسم و تجزیه و تحلیل سیگنال ارائه شده است. جلد دوم: تشخیص و درمان شامل اوتیسم و تجزیه و تحلیل بالینی: تشخیص و اوتیسم و تجزیه و تحلیل بالینی: درمان است.
Neural Engineering for Autism Spectrum Disorder, Volume Two: Diagnosis and Clinical Analysis presents the latest advances in neural engineering and biomedical engineering as applied to the clinical diagnosis and treatment of Autism Spectrum Disorder (ASD). Advances in the role of neuroimaging, magnetic resonance spectroscopy, MRI, fMRI, DTI, video analysis of sensory-motor and social behaviors, and suitable data analytics useful for clinical diagnosis and research applications for Autism Spectrum Disorder are covered, including relevant case studies. The application of brain signal evaluation, EEG analytics, fuzzy model and temporal fractal analysis of rest state BOLD signals and brain signals are also presented.
A clinical guide for general practitioners is provided along with a variety of assessment techniques such as magnetic resonance spectroscopy. The book is presented in two volumes, including Volume One: Imaging and Signal Analysis Techniques comprised of two Parts: Autism and Medical Imaging, and Autism and Signal Analysis. Volume Two: Diagnosis and Treatment includes Autism and Clinical Analysis: Diagnosis, and Autism and Clinical Analysis: Treatment.
Front Cover Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2 Copyright Page Dedication Contents List of contributors About the editors Acknowledgments 1 Autism and clinical analysis: Diagnosis 1 Remote telehealth assessments for autism spectrum disorder 1.1 Introduction 1.1.1 In-person standardized assessments for autism spectrum disorder 1.1.2 Significance of remote assessments for autism spectrum disorder 1.2 Telehealth assessments 1.2.1 Videoconferencing (live/in vivo) 1.2.2 Asynchronous video analysis: current 1.2.3 Asynchronous video analysis: retrospective 1.2.4 Mobile applications 1.2.5 Online websites 1.2.6 Other forms of technology 1.3 Implications 1.3.1 Future directions References 2 Maternal immune dysregulation and autism spectrum disorder 2.1 Introduction 2.2 Cytokines and chemokines (overview) 2.2.1 Cytokines and chemokines in the central nervous system 2.2.2 Effect of cytokine/chemokine production in brain development 2.2.2.1 Cytokines and chemokines in brain function 2.2.2.2 Immune mediators and brain development 2.2.3 Maternal immune dysregulation and developmental outcomes of offspring 2.2.4 Maternal immune activation and autism spectrum disorder 2.2.5 Maternal stress and autism spectrum disorder 2.2.6 Maternal gut microbiome and autism spectrum disorder 2.2.7 Alterations in cytokine and chemokine profiles during gestation and the neonatal period 2.2.7.1 Other cytokines 2.3 Autoantibodies reactive to brain antigens 2.3.1 Autoantibody overview 2.3.2 Autoantibodies and brain pathologies 2.3.3 Autoantibodies and autism spectrum disorder 2.3.4 Maternal autoantibodies and neurodevelopmental alterations 2.3.5 Maternal autoantibody-related autism spectrum disorder overview 2.3.6 MAR ASD animal models 2.3.7 Maternal autoantibody-related fetal- brain targets and autism spectrum disorder 2.3.8 Maternal autoantibodies as potential autism spectrum disorder-risk biomarkers 2.4 Concluding remarks References 3 Reading differences in eye-tracking data as a marker of high-functioning autism in adults and comparison to results from ... 3.1 Introduction 3.2 Related work 3.3 Automated detection of high-functioning autism in adults with eye-tracking data from web tasks 3.4 The proposed approach 3.4.1 Data collection 3.4.2 Participants 3.4.3 Stimuli and tasks 3.4.4 Apparatus 3.4.5 Procedure 3.4.6 Data preprocessing 3.5 Experiments 3.6 Results 3.7 Discussion 3.8 Conclusion 3.9 Open data References 4 Parents of children with autism spectrum disorders: interventions with and for them 4.1 Introduction 4.2 Parent participation in early comprehensive intervention programs 4.2.1 Parental training 4.2.2 Pivotal Response Training Program 4.2.3 Treatment and Education of Autistic related Communication Handicapped Children Program 4.2.4 Early Start Denver Model 4.3 Programs for the development of parent–child interaction 4.3.1 Hanen’s more than words 4.3.2 Preschool autism communication trial 4.3.3 Joint Attention Symbolic Play, Engagement, and Regulation 4.3.4 Improving Parents as Communication Teachers 4.3.5 Parent–child interaction therapy 4.3.6 Stepping Stones Triple P 4.4 Parent–child intervention based on anxiety reduction 4.4.1 Cognitive behavioral therapy for anxiety reduction in children with autism spectrum disorders with parental intervention 4.4.2 Mindfulness-based intervention 4.4.2.1 Mindfulness training for parents mindfulness parenting 4.4.2.2 Mindfulness training for Youngsters with autism spectrum disorder 4.5 Conclusion References 5 Applications of machine learning methods to assist the diagnosis of autism spectrum disorder 5.1 Introduction 5.2 Background and related work 5.2.1 Analysis of visual attention in autism 5.2.2 Machine learning for autism diagnosis 5.3 Data description 5.3.1 Participants 5.3.2 Experimental protocol 5.3.3 Visualization of eye-tracking scanpaths 5.4 Unsupervised learning: clustering of eye-tracking scanpaths 5.4.1 Image preprocessing 5.4.2 Feature extraction using principal component analysis and t-SNE 5.4.3 Feature extraction using deep autoencoder 5.4.4 K-Means clustering 5.4.5 Quality of clusters 5.4.6 Cluster analysis 5.5 Supervised learning: classification model 5.5.1 Data preprocessing and augmentation 5.5.2 Model design 5.5.3 Classification accuracy 5.6 Demo application 5.7 Limitations 5.8 Conclusions References 6 Potential approaches and recent advances in biomarker discovery in autism spectrum disorders 6.1 Introduction 6.2 Diagnosis and categories of biomarkers 6.2.1 Human brain connectome: structural, functional, and molecular neuroimaging biomarkers for autism spectrum disorder 6.2.2 Molecular biomarkers 6.2.2.1 Genes involved in autism spectrum disorder 6.2.2.2 Epigenetic regulation 6.2.2.3 Transcriptomic profiling 6.2.2.4 Noncoding RNAs profiling 6.2.2.5 Microparticles and extracellular vesicles 6.2.2.6 Proteomics 6.2.2.6.1 Proteins involved in neurodevelopment and function impairment 6.2.2.6.2 Proteins involved in lipid metabolism 6.2.2.6.3 Proteins involved in immunology, complement system, and inflammation 6.2.2.6.4 Phosphoproteomics 6.2.2.7 Metabolomics 6.2.2.7.1 Neurotransmission-related metabolites 6.2.2.7.2 Abnormal amino acid and fatty acid-related metabolites 6.2.2.7.3 Gut microbiota-related metabolites 6.2.2.8 Mitochondria dysfunction 6.2.3 Maternal and paternal biomarkers: pregnancy and its potential association with ASD 6.2.3.1 Significance of prenatal components in autism spectrum disorder risk development 6.2.3.2 Screening for prenatal hormones as predictive biomarkers of autism spectrum disorder 6.2.3.3 Screening for prenatal inflammatory cytokines as predictive biomarkers of autism spectrum disorder 6.2.3.4 Autoantibodies 6.2.3.5 Screening for metabolites as predictive biomarkers of autism spectrum disorder 6.2.3.6 Sperm DNA methylation 6.2.3.7 Biomarker discovery, drug development, and personalized medicine 6.2.4 Next generation of diagnostic biomarkers 6.2.4.1 Artificial intelligence advancing diagnosis 6.2.4.2 Artificial intelligence and autism spectrum disorder diagnosis: eye-tracking 6.2.4.3 Artificial intelligence-based systems biology approaches in multiomics 6.3 Conclusion References 7 Detection and identification of warning signs of autism spectrum disorder: instruments and strategies for its application 7.1 Introduction 7.2 Importance of early detection 7.3 Differential diagnosis 7.3.1 A brief history of the relationship between autism and psychosis 7.3.2 Similarities 7.3.3 Distinguishing features 7.4 Detection and screening process 7.5 Symptom detection vs Diagnosis 7.6 Impact on the family of detecting and diagnosing Autism Spectrum Disorder 7.7 Choice of screening instruments according to age of application and cultural environment of implementation 7.8 Discussion 7.9 Conclusions References 8 Machine learning in autism spectrum disorder diagnosis and treatment: techniques and applications 8.1 Introduction 8.2 Utilizing machine learning algorithms to diagnose autism spectrum disorder 8.2.1 Dataset with behavioral characteristics 8.2.2 Dataset with personal/cognitive characteristics 8.2.3 Recommendations 8.3 Feature analysis 8.3.1 Dimensionality reduction 8.3.2 Feature representation 8.3.3 Recommendations 8.4 Technological applications 8.5 Conclusion References 9 Inhibition of lysine-specific demethylase 1 enzyme activity by TAK-418 as a novel therapy for autism 9.1 Introduction 9.2 Lysine-specific demethylase 1 as the potential therapeutic target for autism spectrum disorder 9.2.1 Druggability in targeting epigenetic factors 9.2.2 Potential therapeutic functions of lysine-specific demethylase 1 inhibition 9.2.3 Concern regarding the on-target toxicity of general lysine-specific demethylase 1 inhibitors 9.3 Discovery of the “enzyme activity-specific” inhibitors of lysine-specific demethylase 1 9.3.1 Original screening flow 9.3.2 Discovery of T-448 and TAK-418 9.3.3 Unique inhibitory mechanism of T-448 and TAK-418 9.3.4 Low risk of hematological toxicity by T-448 and TAK-418 in rodents 9.3.5 Preclinical efficacy of T-448 and TAK-418 9.3.6 Hypothesis of the mechanism of action of T-448 and TAK-418 9.4 Discussion 9.5 Conclusion References 10 Behavioral phenotype features of autism 10.1 Introduction 10.2 Eye movement behavior phenotype of autism 10.2.1 Natural stimuli 10.2.1.1 Dataset 10.2.1.2 Analysis 10.2.1.3 Gaze pattern classification and saliency prediction 10.2.1.4 Models submitted to Saliency4ASD 10.2.1.5 Evaluation criteria 10.2.1.6 Results of Saliency4ASD 10.2.2 Face stimuli 10.2.2.1 Dataset 10.2.2.2 Analysis 10.2.2.3 Methods and results 10.2.3 Gaze-following stimuli 10.2.3.1 Dataset 10.2.3.2 Analysis 10.2.3.3 Methods and results 10.3 Action behavior phenotype 10.3.1 Dataset and analysis 10.3.2 Methods and results 10.4 Drawing behavior phenotype 10.4.1 Dataset 10.4.2 Analysis 10.4.3 Results and discussion 10.5 Discussion and conclusion References 11 Development of an animated infographic about autistic spectrum disorder 11.1 Introduction 11.2 Infographics 11.2.1 Study population 11.2.2 Development 11.2.3 Validation and testing 11.3 Results 11.4 Discussion 11.5 Conclusion References 12 Fundamentals of machine-learning modeling for behavioral screening and diagnosis of autism spectrum disorder 12.1 Introduction 12.2 Current autism spectrum disorder screening and diagnostic practices 12.2.1 Commonly used autism spectrum disorder screening instruments 12.2.2 Common problems with current autism spectrum disorder screening and diagnostic practices 12.3 Machine learning-based assessment of autism spectrum disorder 12.3.1 Commonly used datasets for machine learning-based behavioral assessment of autism spectrum disorder 12.3.2 Dimensionality reduction 12.3.3 Commonly used dimensionality reduction techniques 12.3.3.1 Trial-and-error technique 12.3.3.2 Feature selection techniques 12.3.3.3 Feature transformation techniques 12.3.4 Classification algorithms 12.3.5 Model selection 12.3.5.1 Decision trees 12.3.5.2 K-nearest neighbor 12.3.5.3 Naïve Bayes 12.3.5.4 Logistic regression 12.3.5.5 Support vector machine 12.3.6 Confusion matrix 12.3.6.1 Sensitivity and specificity 12.4 Conclusion References 13 A comprehensive study on atlas-based classification of autism spectrum disorder using functional connectivity features f... 13.1 Introduction 13.2 Overview of functional magnetic resonance imaging 13.2.1 Clinical application 13.3 Literature review 13.3.1 Structural magnetic resonance imaging-based autism detection 13.3.2 Functional magnetic resonance imaging-based autism detection 13.3.3 Structural and functional magnetic resonance imaging-based autism detection 13.4 Materials and methods 13.4.1 Preprocessing 13.4.2 Blood oxygen level dependent time-series signal extraction from four dimensional functional magnetic resonance imagi... 13.4.2.1 Automated anatomical labeling 13.4.2.2 Bootstrap analysis of stable clusters 13.4.2.3 Craddock 200 13.4.2.4 Craddock 400 13.4.2.5 Power 13.4.2.6 Eickhoff–Zilles 13.4.2.7 Harvard–Oxford 13.4.2.8 Talaraich and tournoux 13.4.2.9 Dosenbach 160 13.4.2.10 Massive online dictionary learning 13.4.3 Building functional connectivity matrix 13.4.3.1 Full correlation/Pearson’s correlation 13.4.3.2 Partial correlation 13.4.3.3 Tangent space embedding 13.4.4 Feature vector 13.4.5 Classification 13.4.5.1 Hidden layers and neurons per layer 13.4.5.2 Activation function 13.4.5.3 Optimizer 13.4.5.4 Loss function 13.4.5.5 Regularizer 13.4.5.5.1 L2 regularizer 13.4.5.5.2 Dropout 13.4.5.6 Batch size 13.4.5.7 Callback functions 13.4.5.7.1 Early stopping 13.4.5.7.2 Model checkpoint 13.5 Experimental results and analysis 13.5.1 Dataset description 13.5.2 Evaluation of autism spectrum disorder detection framework 13.5.3 Performance evaluation using model-2 13.6 Conclusion 13.7 Future work References 14 Event-related potentials and gamma oscillations in EEG as functional diagnostic biomarkers and outcomes in autism spectr... 14.1 Introduction 14.2 Neurophysiological biomarkers 14.2.1 Introduction to event-related potentials and evoked brain waves oscillations 14.2.2 Rationale for approach using EEG/ERP measures in studying attention in ASD 14.2.3 Visual oddball task with illusory figures 14.2.4 ERP data acquisition and signal processing 14.2.5 Event-related potentials in autism and ADHD 14.2.6 ERP measures in illusory figure (Kanizsa) categorization task 14.2.7 Motor preparation deficits in ASD 14.2.8 ERP in Posner cued spatial attention task 14.2.9 Lateralized Readiness Potential (LRP) as an index of motor preparation in ASD and ADHD 14.3 Gamma oscillations as potential neuromarkers in neurodevelopmental disorders 14.3.1 Gamma oscillations 14.3.2 Cortical excitation/inhibition (E/I) bias and brainwave oscillations 14.3.3 Gamma oscillations in ASD 14.3.4 Hemispheric asymmetry of gamma 14.4 ERP and induced gamma oscillations in facial categorization task in ASD, ADHD, and TD groups 14.4.1 ERP results in ToM task 14.4.2 Induced gamma analysis and results in ToM task 14.5 Evoked and induced EEG data acquisition and processing in Kanizsa oddball task 14.6 Conclusions References Index Back Cover