دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 سری: ISBN (شابک) : 9783030433956, 3030433951 ناشر: SPRINGER NATURE سال نشر: 2020 تعداد صفحات: 706 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب NEURAL ENGINEERING به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Contributors 1 Introduction to Neurophysiology 1.1 Overview of Neurons, Synapses, Neuronal Circuits, and Central Nervous System Anatomy 1.1.1 Temporal and Spatial Facilitation 1.1.2 Special Neural Circuits 1.1.3 Reflexes 1.1.4 Reflex Time 1.2 Sensory Systems 1.2.1 Properties of a Particular Stimulus 1.2.2 Functional Organization of a Receptor 1.2.3 The Relative Distributions of Receptors Within the Human Body 1.2.4 Sensory Input into Motor Systems 1.3 Somatovisceral Sensibility 1.3.1 Processing in the Central Nervous System 1.3.2 Basic Anatomy of the Somatosensory System 1.3.2.1 Specific Pathways 1.3.2.2 Nonspecific Pathways 1.3.3 Somatosensory Projection Areas in the Cortex 1.3.4 Mechanoreception 1.4 General Anatomic and Functional Features of the Motor System 1.4.1 Motor Control Hierarchy for Voluntary Movements 1.4.2 Spinal Cord 1.4.3 Brain Stem Components 1.4.4 Cerebellum 1.4.5 Motor Cortex 1.4.6 Efferent Connections from the Motor Cortex 1.4.7 Basal Ganglia and Thalamus 1.5 Maintenance of Upright Posture and Sense of Equilibrium 1.5.1 Sense of Equilibrium 1.5.1.1 Macular Organs 1.5.1.2 Semicircular Canals 1.5.1.3 Central Vestibular System 1.5.1.4 Vestibular Reflexes 1.6 Complex Integrative Functions of the Motor System 1.6.1 The Complex Motor Function of Speech 1.6.2 Motor Neuron Recruitment 1.7 Pathophysiology of the Motor System 1.7.1 Disorders of the Spinal Cord 1.7.2 Disruption of Functions Within the Brain Stem 1.7.3 Disturbances Within the Cerebellum 1.7.4 Disorders Within the Basal Ganglia 1.7.5 Impairment Within the Motor Cortex 1.8 The Autonomic Nervous System 1.8.1 Sympathetic System 1.8.2 Parasympathetic System 1.8.3 Neurotransmitters in the ANS 1.8.4 The Adrenal Medulla 1.8.5 Central Organization of the ANS 1.9 The Hypothalamus and Homeostasis 1.10 Regulation of Body Temperature: Thermoregulation 1.10.1 Core Temperature 1.10.2 Cutaneous Thermoreception 1.10.3 Central Thermoregulation 1.11 The Limbic and the Ascending Reticular Activating Systems 1.11.1 Function of the Various Portions of the Reticular Activating System 1.11.2 Brain Waves 1.11.3 Sleep 1.11.4 Mechanisms of Sleep 1.12 Pain 1.12.1 Intensity of Pain (Quantity) 1.13 Vision 1.13.1 Functional Anatomy 1.13.2 The Visual Focusing System 1.13.3 Visual Receptor Cells 1.13.4 The Receptor Transduction Process 1.13.5 Eye Movements 1.14 Sound and Hearing 1.14.1 Functional Anatomy 1.14.2 Auditory Sensations 1.14.3 The Central Auditory System 1.15 Taste and Smell Homework References/Additional Sources 2 Biopotential Measurements and Electrodes 2.1 Introduction 2.2 Electrodes for Neural Interfaces 2.2.1 Electrode Properties and Modeling 2.2.1.1 Electrode-Electrolyte Double-Layer Interface 2.2.1.2 Impedance 2.2.1.3 Half-Cell Potential 2.2.1.4 Noise 2.2.1.5 Water Window and Current Transfer Capacity 2.2.2 Volume Conduction for Electrical Recording and Stimulation 2.3 Circuit Techniques for Neural Interfaces 2.3.1 Analog Front-Ends 2.3.2 Intracellular Recording and Clamping Circuits 2.4 Design Considerations and Performance Metrics 2.4.1 Power Consumption 2.4.2 Bandwidth 2.4.3 Input Dynamic Range 2.4.4 Cross-Talk 2.4.5 Noise 2.4.5.1 Front-End Amplifier Noise Model 2.4.5.2 Net Noise Contributions 2.4.6 Interference and Common-Mode Rejection 2.4.6.1 Differential Sensing Circuit Techniques to Mitigate Common-Mode Interference 2.4.6.2 Input Impedance-Boosting Techniques 2.4.6.3 Active Grounding: Driven Right Leg 2.5 Survey of Neural Engineering Applications 2.5.1 Electrodes and Instrumentation 2.5.1.1 Scale and Invasiveness 2.5.1.2 Temporal, Spatial, and Spectral Resolution 2.5.1.3 Experiment Model 2.5.1.4 In-Ear Placement 2.5.2 Minimally Invasive Electrocorticography 2.5.3 Neurotechnologies for Penetrating Electrodes Homework References 3 EEG Signal Processing: Theory and Applications 3.1 Introduction: EEG Generalities 3.1.1 Traditional EEG Bands 3.1.2 Paroxysmal Discharges and EEG Shapes 3.1.3 Survey of EEG Applications 3.2 Time-Domain Representation and Methods 3.2.1 The Teager-Kaiser Energy Algorithm: Theory 3.3 Frequency Domain Methods 3.3.1 Nonparametric Spectral Methods 3.3.2 Parametric (Modeling) Methods 3.3.2.1 Diagnostic Power of the Autoregressive Method Is Used as a Dominant Frequency Method to Calculate Normalized Separation 3.3.3 Parametric Methods of Signal Processing: The MUSIC Algorithm 3.3.4 Wavelets 3.3.4.1 The Wavelet Transform: Variable Time and Frequency Resolution. The Continuous Wavelet Transform (CWT) 3.3.4.2 The Discrete Wavelet Transform 3.3.4.3 Application of Wavelets and Entropy: The Definition of IQ—Information Quantity 3.4 An Application of EEG: Detecting Brain Injury After Cardiac Arrest 3.4.1 Experimental Methods for Hypoxic-Asphyxic Cardiac Arrest and the Use of Normalized Separation 3.4.2 Detecting and Counting Bursts 3.4.3 EEG and Entropy: A Novel Approach to Brain Injury Monitoring 3.4.4 Enhancing Recovery from Cardiac Arrest: The Use of Orexin 3.5 Conclusion Homework References 4 Brain–Computer Interfaces 4.1 Introduction 4.2 BCI Definition and Structure 4.2.1 What Is a BCI? 4.2.2 Alternative or Related Terms 4.2.3 The Components of a BCI 4.2.4 The Unique Challenge of BCI Research and Development 4.2.5 BCI Operation Depends on the Interaction of Two Adaptive Controllers and the User Interface 4.2.6 Choosing Signals and Brain Areas for BCIs 4.3 Signal Acquisition 4.3.1 Invasive Techniques 4.3.1.1 Intracortical 4.3.1.2 Cortical Surface 4.3.2 Noninvasive Techniques 4.3.2.1 EEG 4.3.2.2 MEG 4.3.2.3 fMRI 4.3.2.4 NIRS 4.3.3 Neural Signals Used by BCIs 4.3.3.1 Sensorimotor Rhythms 4.3.3.2 Slow Cortical Potentials 4.3.3.3 The P300 Event-Related Potential 4.3.3.4 Event-Related Potentials 4.3.3.5 Spikes and Local Field Potentials 4.4 Signal Processing 4.4.1 Feature Extraction 4.4.1.1 Artifact/Noise Removal and Signal Enhancement 4.4.1.2 Feature Extraction Methods 4.4.1.3 Feature Selection and Dimensionality Reduction 4.4.2 Feature Translation 4.4.2.1 Continuous Feature Translation 4.4.2.2 Discrete Feature Translation 4.5 Major BCI Applications 4.5.1 Replacing Lost Communication 4.5.2 Replacing Lost Motor Function and Promoting Neuroplasticity to Improve Defective Function 4.5.3 Supplementing Normal Function 4.5.4 Augmenting/Virtualizing Reality with BCI 4.5.5 Providing Neurofeedback 4.6 Examples of EEG-Based BCI Systems 4.6.1 General-Purpose Software Platforms for BCI Research 4.6.2 BCIs Based on Sensorimotor Rhythms 4.6.3 BCIs Based on P300 4.6.4 BCIs Based on Visual Evoked Potentials 4.6.5 BCIs Based on Auditory Evoked Potentials 4.6.6 Hybrid BCI 4.6.7 Attention-Based BCI 4.6.8 BCIs for Brain-to-Brain Communications and Interactions 4.7 BCI Performance Assessment and Training 4.7.1 User Performance Assessment 4.7.2 System Performance Assessment 4.8 Future Perspectives 4.8.1 Expectations 4.8.2 Signal Acquisition and Processing 4.8.3 Clinical and Practical Validation 4.8.4 BCI Training 4.8.5 Recognition of BCI Efficiency and Inefficiency 4.8.6 Reciprocal Learning Between the Machine and the Brain 4.9 Conclusion Homework References 5 Intracortical Brain–Machine Interfaces 5.1 What Is a Brain–Machine Interface? 5.1.1 History of Intracortical BMIs 5.1.2 Components of an Intracortical BMI 5.2 Choosing the Input for iBMIs 5.2.1 Neural Signal Recordings 5.2.2 Multielectrode Arrays 5.2.3 Motor Neurophysiology 5.3 Intracortical Spelling Devices 5.3.1 Classification Decoders 5.4 Intracortical Control of Continuous Effectors 5.4.1 Population Vector Algorithm 5.4.2 Optimal Linear Estimator 5.4.3 Kalman Filter 5.5 Reanimating Paralyzed Limbs 5.5.1 Functional Electrical Stimulation 5.5.2 FES Systems 5.5.3 Brain-Controlled FES 5.5.4 Challenges for FES 5.6 The Future of iBMIs 5.6.1 Restoring Somatosensory Feedback 5.6.2 Building Better Electrodes 5.6.3 iBMIs for Basic Science Homework References 6 Deep Brain Stimulation: Emerging Technologies and Applications 6.1 Introduction 6.2 State of the Art in DBS Instrumentation 6.3 Current Understanding of the Therapeutic Mechanisms of DBS 6.4 Novel Temporal Patterns of Stimulation as a Therapeutic Innovation 6.5 Innovations in DBS Electrode Design 6.6 Imaging and Computational Tools for Personalized DBS 6.7 Development of Closed-Loop DBS Systems 6.8 Emerging Indications 6.9 Nonsurgical Approaches for Deep Brain Stimulation 6.9.1 Focused Ultrasound 6.9.2 Temporal Interference 6.10 Discussion Homework References 7 Transcranial Magnetic Stimulation: Principles and Applications 7.1 Introduction 7.2 Devices 7.2.1 Pulse Generators 7.2.1.1 Circuit Topology 7.2.1.2 Energy Efficiency and Repetitive TMS 7.2.2 Coils 7.2.2.1 Coil Heating 7.2.2.2 Coil Forces 7.2.3 Device Safety 7.2.3.1 Interaction with Other Devices 7.3 Physics 7.3.1 Magnetic Field 7.3.2 Induced Electric Field 7.3.3 Electric Field Models 7.3.3.1 Reciprocity to Magnetoencephalography 7.3.3.2 Fundamental Limitations of Induced Electric Field 7.4 Biophysics 7.4.1 Neuronal Membrane Depolarization in Response to Electric Field 7.4.2 Neural Activation Models 7.5 Measuring Responses to Stimulation 7.5.1 Characterization of Behavior, Cognition, or Emotional State 7.5.2 Electrophysiological and Imaging Methods 7.6 Stimulation Paradigms and Applications 7.6.1 Single Pulses 7.6.2 Paired Pulses 7.6.3 Pulse Trains 7.6.4 Clinical Applications 7.6.5 Research Applications 7.7 Conclusions Homework References 8 Transcranial Electrical Stimulation 8.1 Basics of tES Devices and Dose 8.2 General Design Aspects of tES Electrodes 8.3 tES Electrodes: Sponge Electrode 8.4 tES Electrodes: Self-Adhesive Electrode 8.5 tES Electrodes: High-Definition Electrode (HD Electrode) 8.6 Electrode Resistance 8.7 Current Control, Voltage Limits 8.8 Indications for tES Use 8.9 Current Flow Modeling Informs Device/Electrode Design and Setup 8.10 tES Biophysics/Mechanisms 8.11 Tolerability of tES Devices Homework References 9 Optogenetics: Novel Brain Interface Technology That Originates in Bioprospecting 9.1 Introduction 9.2 Tools of Optogenetics 9.2.1 Opsins for Excitation and Inhibition 9.2.2 Mechanisms of Gene Delivery 9.2.3 Target Species for Optogenetic Experiments 9.3 Mechanisms of Light Delivery 9.3.1 Light-Tissue Interaction 9.3.2 Light-Guiding Systems 9.3.3 Spatial Light Modulators 9.3.4 Biological Sources for Light 9.4 Hybrid Platforms 9.4.1 Optogenetic Neural Probes 9.4.2 Two-Photon Optogenetic Stimulation 9.4.3 Optogenetic Stimulation and Coherence Tomography 9.4.4 Optogenetic Functional Magnetic Resonance Imaging (ofMRI) 9.5 Optogenetic Stimulation for Therapy Homework References 10 Selective Chronic Recording in the Peripheral Nervous System Abbreviations 10.1 Introduction 10.2 Movement Intent Recovery 10.3 High SNR Amplification of Neural Signals 10.4 EMG Interference and Rejection 10.4.1 Increasing SNR with Open Bandwidth 10.5 Separation Algorithm Derivation 10.6 Chronic Nerve Recordings 10.7 Computer Model of Neural Recording Properties of a FINE 10.7.1 Finite Element Model 10.7.2 NEURON Model 10.7.3 Single Fiber Action Potential Through FINE Simulation 10.7.4 Generating Representative Spectra of ENG 10.8 Summary and Conclusions Homework References 11 Functional Magnetic Resonance Imaging 11.1 Introduction 11.2 Magnetic Resonance Imaging 11.3 Blood Oxygenation Level–Dependent Contrast 11.4 BOLD Response to Neural Activity 11.5 Hemodynamic Response Function 11.6 Event-Related and Block Design 11.7 BOLD Time Series Analysis 11.8 Task fMRI for Functional Mapping 11.9 Resting State fMRI 11.10 Naturalistic Paradigm 11.11 Summary Homework References 12 Photoacoustic Tomography of Neural Systems 12.1 Introduction to Photoacoustic Tomography 12.2 Photoacoustic Generation and Propagation 12.2.1 Initial Photoacoustic Pressure 12.2.2 General Photoacoustic Equation 12.2.3 General Forward Solution 12.3 Photoacoustic Detection and Image Reconstruction 12.3.1 Photoacoustic Detection 12.3.2 General Image Reconstruction 12.4 Implementations of Photoacoustic Tomography 12.4.1 Photoacoustic Computed Tomography 12.4.2 Photoacoustic Microscopy 12.5 Photoacoustic Tomography for Neural Imaging 12.5.1 Photoacoustic Tomography of the Brain 12.5.1.1 PAM of the Brain Vasculature at Single-Cell Resolution 12.5.1.2 Label-Free Histology-Like PAM of the Mouse Brain and Peripheral Nerves 12.5.1.3 Label-Free PACT of the Mouse Brain Structures 12.5.1.4 Spectral PAT for Neuroimaging 12.5.2 Photoacoustic Tomography of Neural Activities 12.5.2.1 Monitoring Brain Hemodynamic Responses at Multiple Scales 12.5.2.2 Mapping Large-Scale Neural Activities 12.5.2.3 Imaging Brain Diseases at the Whole Brain Level 12.5.2.4 Imaging Brain Glucose Metabolism 12.5.2.5 Visualizing Neural Activities Using Voltage-/Calcium- Sensitive Indicators 12.5.2.6 Outlook Homework References 13 Electrophysiological Mapping and Source Imaging 13.1 Introduction 13.1.1 Generation and Measurement of EEG and MEG 13.1.2 Spatial and Temporal Resolution of EEG and MEG 13.2 Electrophysiological Mapping 13.2.1 EEG Mapping 13.2.2 MEG Mapping 13.2.3 Surface Laplacian Mapping 13.2.4 Multivariate Pattern Analysis of EEG and MEG Signals 13.3 EEG/MEG Forward Modeling 13.3.1 Source Models 13.3.2 Volume Conductor Models 13.3.3 Forward Solutions 13.4 EEG/MEG Source Imaging 13.4.1 Dipole Source Localization 13.4.2 Cortical Potential Imaging 13.4.3 Cortical Current Density Source Imaging 13.4.3.1 Cortical Current Density Source Model 13.4.3.2 Linear Inverse Filters 13.4.3.3 Regularization Parameters 13.4.3.4 Interpretation of Linear Inverse in Bayesian Theory 13.4.4 Volume Current Density Source Imaging 13.4.4.1 Challenges of the 3D Source Imaging 13.4.4.2 Inverse Estimation Techniques in Volume Current Density Imaging 13.4.4.3 Nonlinear Inverse Techniques 13.4.5 Multimodal Source Imaging Integrating Electromagnetic and Hemodynamic Imaging 13.5 Getting Started with Electrophysiological Imaging and Data Processing 13.6 Discussions Homework References 14 Exploring Functional and Causal Connectivityin the Brain 14.1 Introduction 14.2 Basics of Functional and Causal Connectivity Analysis 14.2.1 Stochastic Processes and Their Characterization 14.2.2 Granger Causality 14.3 Numerical and Experimental Examples 14.4 Brain Causal Mapping from Electrophysiological Measurements in Humans 14.4.1 Analysis of Directed Cortical Interactions 14.4.2 Connectivity Analysis from Electrocorticogram 14.4.3 Connectivity Analysis from E/MEG Source Imaging 14.5 Software Packages for Functional and Causal Connectivity Analysis 14.6 Concluding Remarks Homework References 15 Deep Learning Models with Applications to Brain Image Analysis 15.1 Background 15.2 Image Processing and Concept of Deep Learning 15.2.1 Brain Image Pre-processing 15.2.2 Fundamentals About Neural Network Models 15.3 Convolutional Neural Networks 15.3.1 CNN Fundamentals 15.3.2 CNN Variants 15.3.3 Residual Learning Based on CNN 15.3.4 Fully Convolutional Networks and U-Net 15.3.5 Combination of CNNs 15.3.6 CNN Applications to Brain Image Classification and Segmentation 15.3.7 Brain Image Classification 15.3.8 Brain Image Segmentation 15.4 Recurrent Neural Networks 15.4.1 Recurrent Neural Networks (RNNs): Basic Model 15.4.2 Long Short-Term Memory (LSTM) Model 15.4.3 RNN Applications to Time Series Data Analysis 15.5 Auto-encoder 15.5.1 AE Applications to Feature Learning in Brain Image Analysis 15.5.2 Brain Image Classification 15.5.3 Brain Image Registration 15.6 Generative Adversarial Networks 15.6.1 Principle of GAN 15.6.2 GAN Variants 15.6.3 Pix2Pix GANs 15.6.4 CycleGAN 15.6.5 GAN Applications to Brain Image Analysis 15.6.6 Brain Image Synthesis 15.6.7 Brain Image Augmentation 15.7 Discussion 15.8 Conclusion Homework References 16 Neural Modeling 16.1 Why Build Neural Models? 16.2 Basic Properties of Excitable Membranes 16.2.1 Membrane Properties 16.2.2 Equivalent Circuit Representation 16.2.2.1 Membrane Capacitance 16.2.2.2 Membrane Conductance 16.2.2.3 Normalized Units for the Passive Membrane 16.2.2.4 Passive Membrane Representation 16.3 Excitability 16.3.1 Electric Potentials 16.3.2 Resting Potential 16.3.3 Voltage-Gated Conductances 16.3.4 The Hodgkin-Huxley Model: Action Potentials in the Squid Giant Axon 16.3.4.1 Voltage Clamp and Space Clamp 16.3.4.2 Ionic Conductances 16.3.4.3 Model of the Potassium and Sodium Conductance 16.3.4.4 Potassium and Sodium Currents 16.3.4.5 Complete Hodgkin-Huxley Model 16.3.4.6 Normalized Units in the Hodgkin-Huxley Model 16.3.5 Behavior of theHodgkin- Huxley Model 16.3.5.1 Action Potentials and Threshold 16.3.5.2 Refractory Period 16.3.6 Assumptions of the Model 16.4 Propagating Activity 16.5 Diversity in Channels and Electrical Activity 16.5.1 Bursting 16.5.2 Subthreshold Oscillations 16.5.3 After-Hyperpolarizations and After-Depolarizations 16.5.4 Spike-Frequency Adaptation 16.5.5 Bistability 16.5.6 Post-Inhibitory Rebound Spiking 16.6 Nonlinear Dendritic Processing 16.6.1 Dendritic Channel Expression 16.6.2 Dendritic Excitability 16.7 Simple Neural Models 16.7.1 Integrate-and-Fire Model 16.7.2 Behavior of the Leaky Integrate-and-Fire Model 16.7.3 Modified Integrate-and-Fire Models 16.7.3.1 Resonate-and-Fire Models 16.7.3.2 Quadratic Integrate-and-Fire Models 16.7.3.3 Complexity in Simple Models 16.8 Generalized Linear Model 16.8.1 Linear-Nonlinear Poisson Model 16.8.2 Generalized Linear Model with Spike History Dynamics 16.9 Similar Phenotypes Arising from Disparate Mechanisms 16.10 Synapse Models 16.11 Short-Term Synaptic Plasticity 16.12 Beyond Single Neurons 16.12.1 Feed-Forward Networks 16.12.2 Persistent Activity 16.13 Neural Modeling in Medicine 16.14 Modeling Resources Homework References 17 Linear Dynamics and Control of Brain Networks 17.1 Emergence in the Structure and Function of Complex Systems 17.2 Quantitative Dynamical Models of Neural Systems and Interactions 17.2.1 Spatial and Temporal Considerations 17.2.2 Dynamical Model Approximations 17.2.3 Incorporating Exogenous Control 17.2.4 Model Linearization 17.3 Theory of Linear Systems 17.3.1 Impulse Response 17.3.2 Control Response 17.3.3 Linear Relation Between the Convolution and Control Input 17.3.4 Controllability 17.3.5 Minimum Energy Control 17.4 Mapping Network Architecture to Control Properties 17.4.1 Neuronal Control in Model Organisms 17.4.2 State Transitions in the Human Brain 17.5 Methodological Considerations and Limitations 17.5.1 Dimensionality and Numerical Stability 17.5.2 Model Validation and Experimental Data 17.5.3 Assumption of Linearity 17.6 Open Frontiers 17.6.1 Theory and Statistics 17.6.2 Context, Computations, and Information Processing 17.6.3 Disease and Intervention Homework References 18 Deciphering the Neuronal Population Code 18.1 Introduction 18.2 Extracting Information from Single Neurons 18.3 Correlation in Pairs of Neurons 18.4 Synchrony in Pairs of Neurons 18.5 Beyond Pairwise Correlation 18.5.1 Relating Neurons to Behavior 18.6 Developing Hypotheses About the Structure and Function of Neuronal Population Activity 18.7 Conclusion Homework References 19 Machine Intelligence-Based Epileptic Seizure Forecasting 19.1 Introduction 19.2 Feature Extraction 19.2.1 Rhythms of the Brain 19.2.2 Wavelet Phase Coherence 19.2.3 Cross-Frequency Coupling 19.2.4 Model Performance 19.3 Seizure Detection and Forecasting 19.3.1 Linear Methods 19.3.2 Tree-Based Methods 19.3.3 Deep Neural Networks 19.3.4 Improving Model Performance 19.4 Other Applications of Machine Intelligence with EEG 19.4.1 Prediction of Antiepileptic Drug Treatment Outcomes 19.5 Current Challenges and Future Directions Homework Conceptual Questions Practical Analysis Questions References 20 Retinal Prosthesis 20.1 Introduction 20.2 Basic Anatomy of the Eye and Retina 20.2.1 Eye Disease 20.2.2 Retinal Prosthesis 20.2.3 Clinical Studies 20.3 Retinal Prostheses Research 20.3.1 Camera 20.3.2 Image Processing 20.3.3 Retinal Stimulating Electrode Arrays 20.4 Conclusion Homework References 21 Retinal Bioengineering 21.1 Introduction 21.2 The Neural Structure and Function of the Retina 21.2.1 Photoreceptors 21.2.2 Retinal Circuits 21.2.3 Receptive Fields 21.2.4 Eccentricity and Acuity 21.3 Vasculature of the Retina 21.4 Major Retinal Diseases 21.4.1 Retinitis Pigmentosa 21.4.2 Macular Degeneration 21.4.3 Glaucoma 21.4.4 Diabetic Retinopathy 21.4.5 Vascular Occlusive Disease 21.4.6 Retinal Detachment 21.5 Engineering Contributions to Understanding Retinal Physiology and Pathophysiology 21.5.1 Photoreceptor Models 21.5.1.1 Input-Output Analysis of Rod Responses 21.5.1.2 Biochemically Based Analysis of Rod Responses 21.5.1.3 Responses to Steps of Light 21.5.1.4 Diagnostic Value of a-Wave 21.5.2 Post-Receptor ERG Analyses 21.5.2.1 B-Wave Analyses 21.5.2.2 Computing ERGs from Specific Retinal Areas 21.5.3 Ganglion Cell Models 21.5.3.1 Systems Analysis 21.5.3.2 X and Y Cells in Cat 21.5.3.3 Difference of Gaussians Model of the Receptive Field 21.5.3.4 Gaussian Center-Surround Models 21.5.3.5 More Complex Retinal Ganglion Cell Models 21.5.3.6 Multielectrode Recordings 21.5.3.7 Other Types of Retinal Ganglion Cells 21.5.4 Retinal Connectivity Models 21.6 Engineering and the Retinal Microenvironment 21.6.1 Oxygen 21.6.2 Ion Distribution 21.6.2.1 H+ Distribution and Production 21.6.2.2 Retinal Extracellular Volume 21.6.2.3 Net Changes in Ion Distribution with Light 21.7 Opportunities Homework References 22 Neural Tissue Engineering 22.1 Introduction 22.1.1 Tissues of the Nervous System 22.1.1.1 Cells and Tissues of the Brain 22.1.1.2 Tissue and Cells of the Spinal Cord 22.1.1.3 Tissue and Cells of the Peripheral Nervous System 22.1.2 Targets of Tissue Engineering Approaches in the Nervous System 22.1.2.1 Nervous System Injuries 22.1.2.2 Degenerative Disease of the Nervous System 22.1.2.3 Neural Device Integration 22.2 Tissue Engineering Technologies 22.2.1 Material Infrastructure for Regeneration 22.2.1.1 Nerve Conduits for PNS Repair 22.2.1.2 Implantable Hydrogels for CNS Regeneration 22.2.2 Neurotrophic Factors 22.2.3 Cellular Engineering Approaches 22.2.3.1 Stem Cells 22.2.3.2 Genetic Engineering 22.2.3.3 Gene Therapy 22.2.4 Immunomodulation 22.2.5 Electrical Stimulation for Repair and Regeneration 22.3 Conclusion Homework References Index