دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Russell R. Lonser (editor), Malisa Sarntinoranont (editor), Kristof Bankiewicz (editor) سری: ISBN (شابک) : 0128139978, 9780128139974 ناشر: Academic Pr سال نشر: 2019 تعداد صفحات: 533 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Nervous System Drug Delivery: Principles and Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحویل دارو به سیستم عصبی: اصول و تمرین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارائه دارو به سیستم عصبی: اصول و تمرین به کاربران کمک می کند تا فیزیولوژی سیستم عصبی موثر بر تحویل دارو، اصولی که زیربنای روش های مختلف تحویل دارو هستند و کاربرد مناسب روش های تحویل دارو برای درمان های دارویی و بیماری خاص محققانی که عوامل درمانی احتمالی سیستم عصبی را توسعه میدهند، از این کتاب برای بهینهسازی تحویل دارو در طول ارزیابی بالینی و آمادهسازی برای پیشرفت نظارتی عوامل جدید استفاده خواهند کرد. پزشکان بینش مستقیمی در مورد تغییرات پاتوفیزیولوژیکی که بر تحویل دارو تأثیر میگذارند به دست خواهند آورد و دانشجویان و کارآموزان این را منبعی حیاتی برای درک و به کارگیری تکنیکهای دارورسانی در سیستم عصبی خواهند یافت.
Nervous System Drug Delivery: Principles and Practice helps users understand the nervous system physiology affecting drug delivery, the principles that underlie various drug delivery methods, and the appropriate application of drug delivery methods for drug- and disease-specific treatments. Researchers developing nervous system putative therapeutic agents will use this book to optimize drug delivery during preclinical assessment and to prepare for regulatory advancement of new agents. Clinicians will gain direct insights into pathophysiologic alterations that impact drug delivery and students and trainees will find this a critical resource for understanding and applying nervous system drug delivery techniques.
Cover NERVOUS SYSTEM DRUG DELIVERY: Principles and Practice Copyright Dedications Contributors Preface Acknowledgments Section I: Physiology of Nervous System Drug Delivery 1 Fundamentals of Brain-Barrier Anatomy and Global Functions Barriers of the central nervous system The neurovascular unit Pericytes Neuroglia Basement Membrane Transport routes across the brain endothelium Paracellular Pathway Transcellular Pathway Junctional complexes of the BBB Tight Junctions Occludin Claudins Adherens Junctions Junctional Adhesion Molecules Scaffolding Proteins Opening the BBB for therapeutic considerations References 2 Blood-Brain Barrier in Disease States Blood-brain barrier research Building a BBB for experimental studies The BBB as an impediment to therapeutic interventions for neurological disease The BBB as a target for therapeutic interventions for neurological diseases How does the BBB control neuronal activity? Conclusions References 3 Pharmacokinetics of Systemic Drug Delivery Pharmacokinetics and the blood-brain barrier The neurovascular unit and the blood-brain barrier Pharmacokinetic analysis methods Brain Uptake Index Determination In Situ Brain Perfusion Microdialysis Method and Improvements Using Cassette Dosing Pharmacological Inhibition Assay Flux Assay Pharmacokinetic methods for overcoming the blood-brain barrier Peptide Mimics RNA Interference Intra-Arterial Hyperosmolar Infusion Focused Ultrasound Molecular Trojan Horse Drug Delivery Across The BBB Insulin Receptors Transferrin Receptor Lipoprotein Receptors Diphtheria Toxin Receptor Immunoglobulin G Fusion Proteins and Molecular Trojan Horse Technology Avidin-Biotin Technology in Molecular Trojan Horse Technology Efflux Transporter Inhibitors Viral Vectors Liposome Delivery of Therapeutics Conclusions References 4 Pharmacokinetics of Drug Delivery Past the Blood-Brain Barrier Introduction Anatomy of the BBB Methods of measuring pharmacokinetics across the BBB Methods of enhancing drug delivery to the CNS Transcytosis Carrier- and Receptor-Mediated Transport Designer Molecules and Manufactured Delivery Systems Iron Particles: Ultrasmall Iron Oxide Particles Methods that bypass the BBB Methods that open the BBB Osmotic disruption of the BBB Conclusions References 5 Anatomy and Physiology of Cerebrospinal Fluid Dynamics Introduction Summary of cerebrospinal fluid space anatomy Biological significance of CSF CSF circulation Origins of CSF pulsations In vivo assessment of CSF dynamics Numerical assessment of CSF dynamics Solute transport within the CSF Acknowledgment Funding statement References 6 Pharmacokinetics of Polymeric Drug Delivery Drug delivery to the central nervous system Brain tumors The role of the blood-brain barrier in drug delivery Polymeric drug delivery to the brain Polymer Degradation in Animal and in Vitro Models Release of Carmustine from The Wafer Metabolic Processing of Sebacic Acid, p(CPP), and Carmustine in Animal Models Sebacic Acid 1,3-Bis-(p-Carboxyphenoxy)propane (p-CPP) Carmustine Carmustine Distribution in Animal Models and Humans Edema and Bulk-Flow Contribute to Interstitial Drug Delivery Additional Variables in Drug Penetration Pharmacokinetic model Clinical use of local chemotherapy in humans Conclusions References 7 Pharmacokinetic Models of Convection-Enhanced Drug Delivery Introduction Major tissue flow and pharmacokinetic parameters ϕ (Fluid Volume Fraction) K (Hydraulic Conductivity or Permeability) D (Diffusivity) Ps (Product of Permeability Coefficient and Surface Area Per Unit Volume) R (Whole Tissue to Extracellular Space Partitioning Parameter) k (Reaction Constant) Case models of convection-enhanced delivery Case i: Quinolinic Acid Case ii: SP-DT Neurotoxin Case iii: GDNF Overview and additional considerations References 8 Mechanisms and Clinical Applications of Stem Cell Therapy Stem cell technologies Human Pluripotent Stem Cells Overview Clinical Application and Therapeutic Mechanisms of Human Pluripotent Stem Cells Fetal-Derived Neural Progenitor Cells Overview Therapeutic Mechanisms and Clinical Applications of Fetal-Derived Neural Progenitor Cells Mesenchymal Stem Cells Overview Clinical Application and Therapeutic Mechanisms for Mesenchymal Stem Cells Stem cell therapies for indications of the central nervous system Traumatic Brain Injury Overview Stem Cell Therapies for Traumatic Brain Injury Traumatic Spinal Cord Injury Overview Stem Cell Therapies for Traumatic Spinal Cord Injury Parkinson Disease Overview Stem Cell Therapies for Parkinson Disease Multiple Sclerosis Overview Stem Cell Therapies for Multiple Sclerosis Amyotrophic Lateral Sclerosis Overview Stem Cell Therapies for Amyotrophic Lateral Sclerosis References Further Reading Section II: Nervous System Drug Delivery Techniques 9 Intravenous and Intravascular Drug Delivery Overview of the blood-brain barrier Tight Junctions Cellular Components of The Blood-Brain Barrier Endothelial Cells Astrocytes Pericytes Biochemical Components Rational drug design Prodrugs Lipophilic Analogs Chemical Drug Delivery Systems Carrier-Mediated Transport Physical disruption of the blood-brain barrier Osmotic Disruption Magnetic Resonance Imaging-Guided Focused Ultrasound Bradykinin Radiation Biochemical circumvention of the blood-brain barrier Convection-Enhanced Delivery Receptor-Mediated Transport Cell-Penetrating Peptides Cell-Mediated Drug Delivery Oncolytic Viruses P-glycoprotein Modulation Conclusions References 10 Blood-Brain Barrier Disruption Introduction Delivering agents across the BBB: Factors that impact chemotherapy delivery to brain tumors, from preclinical studies to c ... The clinical method of osmotic blood-brain barrier opening Clinical results with blood-brain barrier disruption Future directions for blood-brain barrier disruption Conclusions Acknowledgments References 11 Ultrasonic Methods Introduction Focused ultrasound Basic Physical Principles Biological Effects Blood-brain barrier disruption Mechanism of BBB Disruption Safety Factors Affecting Opening and Closure of the BBB Therapeutic delivery Neuro-oncology Breast Cancer Brain Metastasis Glioblastoma Multiforme Diffuse Intrinsic Pontine Glioma Neurodegenerative Disease Alzheimer Disease Parkinson Disease Other Emerging Indications Future prospects References 12 Nanoparticles for Brain Tumor Delivery Nanoparticles for treatment of brain tumors Brain tumor physiology and microenvironment Physiological barriers to nanoparticle delivery Passive accumulation of nanoparticles by the EPR effect siRNA Delivery Antivascular Effects of Drug-containing Nanoparticles Vascular permeability modulation to enhance EPR-mediated delivery Molecular Modulation of Barrier Properties Mechanical Modulation of Barrier Properties Targeted nanoparticles Quantitative tools for development of nanoparticle delivery strategies Conclusions Acknowledgments References 13 Solute Transport in the Cerebrospinal Fluid: Physiology and Practical Implications Physiological mechanisms of drug delivery to the central nervous system via cerebrospinal fluid and perivascular channels Methods Research Animals Positron Emission Tomography Fluorescence Microscopy With in Vivo Labeling of Perivascular Cells Monitoring CSF Pressure Key results and discussion The Initial Translocation of the Intrathecal Bolus Acceptance of Large Additional Volume and Hydrostatic Compliance Solute Spread in the CSF: Hydrodynamic Factors Solute Clearance from the CSF: Clearance Routes and Solute Molecule/Particle Size Dependence Perivascular Entrance and Transport of Macromolecules into the CNS The State of Perivascular Channels in Disease Overall Physiological Pharmacokinetic Scheme Conclusions Acknowledgments References Further Reading 14 Drug-Impregnated Polymer Delivery Tumors of the central nervous system Natural barriers to the central nervous system The Neurovascular Unit The Extracellular Space The Blood-Brain Tumor Barrier Delivery of neurooncology therapeutics Polymer Development The Polyanhydride Wafer Carmustine Preclinical Carmustine Studies Clinical Applications of Carmustine Interstitial Chemotherapy for Recurrent GBM Interstitial Chemotherapy for Newly Diagnosed GBM Interstitial Chemotherapy for Brain Metastases Future Directions with the Polymeric Wafer Polymeric drug delivery: Preclinical models and future applications Hydrogels PLGA-Based Hydrogels Photosensitive Hydrogels Polymeric Nanoparticle-Based Systems Synthetic Polymers Natural Polymers Microchips Additional techniques Conclusions References Further Reading 15 Immunomodulatory Methods Immunotherapy for malignancies of the central nervous system Immune biologics: Antibodies for the treatment of diseases of the central nervous system Production and History Mechanism of Action and Applications Naked monoclonal antibodies Monoclonal Antibodies in Neuro-Oncology Clinical Implementation Limitations Immune Checkpoint Inhibitors Indoleamine 2,3-Dioxygenase Pathway Approaches Clinical Implementation Limitations Monoclonal Antibodies for Patients with Multiple Sclerosis Monoclonal Antibodies for Patients with Alzheimer Disease Monoclonal Antibodies for Patients with Headaches Targeting the Trigeminovascular Calcitonin Gene-Related Pain Mediated Pathway Conjugated monoclonal antibodies: Bispecific antibodies, antibodies-drug conjugates, recombinant immunotoxin therapy, radio ... Bispecific Antibodies Clinical Implementation Limitations Antibody-Drug Conjugates Clinical Implementation Limitations Recombinant Immunotoxin Therapy Clinical Implementation Limitations Radioimmunotherapy Clinical Implementation Limitations Immunoliposomes Clinical Implementation Limitations Cytokines for the treatment of diseases of the central nervous system Definition and Function Cytokines Across the BBB Applications of Cytokines in Neurological Disease: Stroke, Alzheimer Disease, Multiple Sclerosis, Tumors Clinical Implementation Limitations Cell-based therapies for the treatment of diseases of the central nervous system Adoptive Cell Therapy Clinical Implementation Limitations Active immunotherapy for the treatment of diseases of the central nervous system Clinical Implementation Limitations Virotherapy Clinical Implementation Limitations Conclusions References 16 Convection-Enhanced Drug Delivery in the Central Nervous System Introduction Biomechanics and properties of CED in the CNS General Properties of CED CED Bypasses the BBB Targeted Delivery Homogeneous Distribution Reproducible Distribution Clinically Relevant Distribution Patterns of Infusate Flow Effect of Anatomic Regions Convective delivery methodology Acute Delivery in the Brain Infusion Rates Process for Chronic Delivery Imaging of convective delivery Benefits of Intraoperative Imaging Imaging Tracers Intraoperative MR Imaging Reflux-resistant infusion CANNULAE Mechanics and Common Causes of Reflux Step Design Reflux-Resistant Cannulae Shape-Conforming of Infusate Using Controlled Backflow Optimized Cannula Placement High Reproducibility with Optimized Cannula Placement Infusion volume Vd to Vi Ratio in AAV Clinical Trials Guidance systems Shift from Frame-Based to Frameless Systems Ball-Joint Guide Array Conclusions References 17 Stem Cell Transplantation for Neurological Disease: Technical Considerations and Delivery Devices Stem cells in neurologic disease Selection of the optimal strategy for stem cell delivery Technical Considerations for Intraparenchymal Stem Cell Delivery Cell Viability Avoiding Reflux of Delivered Cells Accuracy of Delivery: Frame-based or Frameless Stereotactic Targeting Available Stem Cell Delivery Platforms The Straight Cannula-syringe Delivery System Limitations in scalability The need for multiple injections Radial Distribution Cannulas Intracerebral Microinjection Instrument Radially Branched Deployment Device Adaptation to Interventional MRI Conclusions References 18 CRISPR-Cas Gene Editing for Neurological Disease Introduction CRISPR-Cas gene editing in mammalian systems Moving CRISPR-Cas gene editing toward the clinic CRISPR-Cas RNA targeting CRISPR transcriptional regulation in the mammalian brain References Section III: Clinical Application of Nervous System Drug Delivery 19 Drug- and Disease-Specific Paradigms for Drug Delivery to the Central Nervous System Challenges of delivering drugs to the central nervous system The blood-brain barrier The Blood-brain Barrier in Disease States Blood-brain Barrier Modulation High-intensity Focused Ultrasound The brain-cerebrospinal fluid barrier Drug-delivery routes for the central nervous system Intra-arterial Drug Delivery Intrathecal/intraventricular Drug Delivery Direct Injection Convection-enhanced Delivery Dissolvable Wafers Intranasal Delivery Drug-based paradigms Chemotherapy Immunotherapy Drug-coupling Agents Nanoparticles Liposomes Gene Therapy: Systemic and Direct Injection Viral Vectors Nonviral Gene Therapy Cell-based Gene Therapy Disease-specific paradigms Glioblastoma Multiforme Parkinson Disease Other Neurodegenerative Conditions Huntington Disease Spinal Muscular Atrophy Friedreich Ataxia Genetic Disorders Metachromatic Leukodystrophy Stroke Pain Future work Stem Cell Therapies CRISPR Conclusions References 20 Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Brain Tumors Convection-enhanced delivery of drugs to the brain DCE-MRI for tumors Indicator-Dilution Methods for Estimating Microvascular Permeability The Graphical Patlak Method and its Extension MRI Contrast and Contrast Agent Concentration An Example Analysis in an Animal Model of Cerebral Tumor The Logan Plot in DCE-MRI DCE-MRI Measures of Tumor Fluid and Mechanical Properties Combined Measures of Tumor Physiology: Acute Changes after High-Dose Radiotherapy MRI Estimates of Tissue Fluid Conductivity and TIFP Conclusions The Crone-Renkin single-capillary model Logan Plot Theory References 21 Clinical Methods of Nervous System Drug Delivery for Tumors Drug delivery for treatment of glioblastoma Methods of drug packaging Nanovectors Polymers Hydrogels Microchips Methods of drug delivery Direct Injection Convection-Enhanced Delivery Matching drugs with methods Conclusions References 22 Delivery Methods for Treatment of Genetic Disorders Gene therapy in the 21st century Non-integrating viral vectors Integrating viral vectors Nonviral gene editing Cellular therapy Principles of approaches to the CNS Conclusions References 23 Direct Convective Nervous System Drug Delivery for Patients with Neurodegenerative Disorders Intraoperative magnetic resonance imaging-guided convection-enhanced delivery The clearpoint system iMRI environment ClearPoint Workflow Other considerations in intracerebral drug delivery Conclusions References 24 Central Nervous System Drug Delivery After Ischemic or Hemorrhagic Stroke Drug delivery after stroke Pathophysiology of ischemic stroke Barriers to central nervous system drug delivery The Blood-Brain Barrier Pathologic Changes in Stroke that Alter Drug Delivery Systemic delivery Chemical Ligand-enhanced Conjugation Biological Conjugation Colloidal Drug Carriers Localized CNS delivery Intra-arterial Delivery Intraventricular/Intrathecal Delivery Intranasal Direct Local Injection Goals of drug delivery to the CNS after stroke Intra-arterial Thrombolytic Therapy Intra-arterial Vasodilator Therapy For Cerebral Vasospasm Intraventricular Applications in Patients with Hemorrhagic Stroke Sonolysis Neuroprotection Restorative Stem Cell Therapies Conclusions References 25 Intrathecal Drug Delivery for Cancer Pain Pain management in cancer patients Initial evaluation Intrathecal Drug Delivery Systems Drug selection Panel Recommendations from the 2017 PACC Compounding of Medications Drug Flow Rates and Intermittent Bolusing Trial Period for Determination of Permanent Intrathecal Therapy Adverse Effects and Complications Current evidence for intrathecal therapy Emerging Intrathecal Pain Control Agents Substance P-saporin and Substance P-pseudomonas Exotoxin-35 for Pain Control Basic biochemistry Preclinical trials with SP-SAP and SP-PE35 Human clinical trial experience with SP-SAP and SP-PE35 Resiniferatoxin for Pain Control Basic Neurobiology Clinical Indications and Administration Routes for Resiniferatoxin Preclinical Trials with Resiniferatoxin Human Clinical Trial Experience with Resiniferatoxin Future Research Conclusions References Index A B C D E F G H I J K L M N O P Q R S T U V W Z