دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Antonio Benayas (editor), Eva Hemmer (editor), Guosong Hong (editor), Daniel Jaque (editor) سری: ISBN (شابک) : 3030320359, 9783030320355 ناشر: Springer سال نشر: 2020 تعداد صفحات: 391 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Near Infrared-Emitting Nanoparticles for Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوذرات ساطع کننده مادون قرمز نزدیک برای کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface and Summary Acknowledgements Contents 1 Optical Properties of Tissues in the Near Infrared: Their Relevance for Optical Bioimaging 1.1 Optical Properties of Tissues: Physical Origin and Statistical Approach 1.1.1 Basic Interactions Between Light and Matter 1.2 Light Propagation in Biological Tissues 1.3 Properties of Light in the Near Infrared 1.3.1 Blood 1.3.2 Water 1.3.3 Skin 1.3.4 Tissue Autofluorescence 1.4 Imaging in the II Near Infrared Window 1.5 Consequences of Near Infrared Light Propagation in Image Quality and Resolution References 2 NIR Autofluorescence: Molecular Origins and Emerging Clinical Applications 2.1 Introduction 2.2 NIR Autofluorescence as a Problem 2.3 NIR Autofluorescence Sources 2.3.1 Autofluorescence in the Visible 2.3.2 In Vivo Autofluorescence in the NIR: Plant Sources 2.3.3 In Vivo Skin Autofluorescence in the NIR 2.3.4 Other Sources of In Vivo NIR Autofluorescence 2.4 NIR Autofluorescence as a Solution: Applications 2.4.1 Surgical Guidance and Diagnostics in Cancer 2.4.2 Monitoring Ophthalmological Diseases 2.4.3 Intra-Operative Parathyroid Gland Identification 2.4.4 Imaging Atherosclerotic Plaque in Coronary Artery Disease 2.5 Conclusion and Future Perspectives References 3 Surface Modification of Near Infrared-Emitting Nanoparticles for Biomedical Applications 3.1 Introduction 3.2 Strategies for Surface Modification 3.3 Conclusion and Challenges in Surface Modification References 4 Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging 4.1 Introduction 4.2 NIR Emissions from RENPs 4.2.1 NIR Upconversion Luminescence 4.2.2 NIR Downshifting Luminescence 4.3 In Vivo NIR Imaging Using RENPs 4.3.1 Bioimaging Using NIR UCL 4.3.2 Bioimaging Using NIR-II Downshifting Luminescence 4.4 Time-Gated Luminescence Imaging 4.4.1 Principle of Time-Gated Imaging 4.4.2 Time-Gated Imaging in NIR-II Window 4.4.3 Multiplexing Imaging with Tunable Lifetimes 4.5 Conclusions References 5 Recent Advances in Development of NIR-II Fluorescent Agents 5.1 NIR-II Fluorophores with High Fluorescence Quantum Yields 5.2 NIR-II Fluorophores with Long Emission Wavelengths 5.3 Favorable Pharmacokinetics and Biocompatibility 5.4 Outlook References 6 Near Infrared Spectral Imaging of Carbon Nanotubesfor Biomedicine 6.1 Introduction 6.2 Optophysical Properties of Single-Walled Carbon Nanotubes 6.2.1 Intrinsic Bandgap Photoluminescence 6.2.2 Isolation of Single-Nanotube Chiralities 6.2.3 Inherent Multiplicity of Nanotube Structures 6.2.4 Biocompatibility 6.3 Photoluminescent SWCNTs as Imaging and Sensing Agents 6.3.1 Structural Properties of Linear SWCNTs 6.3.2 Advantageous Optical Properties 6.3.3 Photoluminescence Modulation by Environment 6.3.4 Multimodal Functionalization of the Nanotube Structure 6.3.5 Comparison to Other NIR Agents 6.4 Instrumentation for Near Infrared Spectroscopy-Resolved Imaging 6.4.1 New Imaging Tools 6.4.2 NIR Imaging of SWCNTs in Biological Systems 6.5 Global NIR Hyperspectral Imaging 6.5.1 Hyperspectral Imaging of SWCNTs in Biological Systems 6.5.2 Applications for Characterizing Individual Carbon Nanotubes 6.6 Spectral Imaging in Live Cells 6.6.1 Applications in Live Cells 6.6.2 Spectral Imaging of a Sensor for Endolysosomal Lipids 6.7 Spectral Imaging in Vivo 6.7.1 Technical Challenges to NIR In Vivo Imaging 6.7.2 Spectral Imaging in Complex Biological Systems 6.7.3 Spectral Imaging of the Lipid Sensor in Live Animals 6.8 Conclusion 6.8.1 The Challenges of Molecular Identity, Standardization, and Biocompatibility 6.8.2 Crossroad for Nanotubes: Tool for Basic Research and Translational Biomedicine References 7 Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications 7.1 Near Infrared-Emitting Carbon Nanomaterials 7.2 Carbon Nanomaterials 7.2.1 Carbon Nanotubes 7.2.2 Carbon Dots 7.2.3 Graphene Dots 7.3 Synthesis of Carbon Nanomaterials 7.3.1 Top-Down Synthesis of Nanomaterials 7.3.1.1 Using Arc-Discharge and Laser Ablation for the Synthesis of Carbon Nanomaterials 7.3.2 Bottom-Up Synthesis of Carbon Nanomaterials 7.3.2.1 Carbon Vapor Deposition Reactions 7.3.2.2 Solvothermal and Microwave Assisted Reactions 7.4 Biomedical Applications 7.4.1 NIR Bioimaging 7.4.2 Biosensors 7.5 Challenges and Perspectives References 8 NIR-Persistent Luminescence Nanoparticles for Bioimaging, Principle and Perspectives 8.1 Introduction 8.2 Main Characteristics of the Persistent Luminescence Materials 8.3 Persistent Luminescence Mechanisms 8.4 Focus on One Developed Materials ZnGa2O4:Cr Nanoparticles for Persistent Luminescence Applications in the BW1 Range 8.5 Biocompatibility 8.6 Excitation Capabilities and Long-Term In Vivo Imaging 8.7 Strategies Developed to Perform Long-Time Imaging 8.8 Multimodal Imaging 8.9 Theranostics Nanoprobes 8.10 Photodynamic Therapy with PLNPs 8.11 Photothermal Therapy with PLNPs 8.12 Perspectives of the NIR-Persistent Luminescence Nanoparticles for Bioimaging 8.13 Conclusions References 9 Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques 9.1 Introduction 9.2 Autofluorescence Filtering Strategies 9.2.1 Spectral Filtering of the Autofluorescence: NIR-II-Emitting Nanoparticles 9.2.1.1 Carbon Nanotubes 9.2.1.2 Quantum Dots and Semiconducting Nanoparticles 9.2.1.3 Rare Earth-Doped Nanoparticles 9.2.1.4 Polymeric Nanoparticles 9.2.2 Time-Domain Filtering of Autofluorescence: Time-Gating Techniques 9.3 Excitation-Free Approaches 9.3.1 Long-Persistent-Luminescence Nanoparticles 9.3.1.1 Persistent Luminescence with Inorganic Nanoparticles 9.3.1.2 Persistent Luminescence with Organic Molecules 9.3.2 Bioluminescence 9.3.3 Chemiluminescence 9.4 Multiphoton Excitation in the NIR-II 9.5 Conclusions and Perspectives References 10 Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections Abbreviations 10.1 Introduction: Why Use Polymer Functionalization of Nanoparticles? 10.2 Types of NIR-Emitting Nanoparticles 10.2.1 Organic Dyes and Small-Molecule Probes 10.2.2 Inorganic Quantum Dots 10.2.3 Au Nanoparticles 10.2.4 Carbon Dots, Carbon Nanotubes, Graphene and their Derivatives 10.2.5 Upconversion or Downconversion Nanoparticles 10.3 Discussion and Future Prospects References 11 Near Infrared Ag2S Quantum Dots: Synthesis, Functionalization, and In Vivo Stem Cell Tracking Applications Abbreviations 11.1 Introduction 11.2 Synthesis of Ag2S QDs 11.2.1 Methods for Synthesizing Photoluminescent Ag2S QDs 11.2.2 Emission Wavelength Regulation of Ag2S QDs 11.2.3 Synthesis of Multifunctional Ag2S QDs 11.3 Surface Functionalization of Ag2S QDs 11.3.1 Preparing Water Soluble and Stable Ag2S QDs 11.3.2 Surface Functionalization and Biomedical Applications of Ag2S QDs 11.4 Biocompatibility of Ag2S QDs 11.4.1 In Vitro Toxicity Study of Ag2S QDs 11.4.2 In Vivo Toxicity of Ag2S QDs 11.5 In Vivo Stem Cell Tracking Applications of Ag2S QDs 11.5.1 Tracking Transplanted Stem Cells for Liver Therapy 11.5.2 Tracking Stem Cells for Cutaneous Regeneration 11.5.3 Tracking the Fate of Stem Cells by Ag2S QD-Based Multimodal Imaging 11.6 Future Prospects References 12 Non-plasmonic NIR-Activated Photothermal Agentsfor Photothermal Therapy 12.1 Introduction 12.2 Graphene and Its Derivatives 12.2.1 Graphene 12.2.1.1 Graphene Oxide 12.2.1.2 Reduced Graphene Oxide 12.2.2 Carbon Quantum Nanodots (C-Dots, CQDs) 12.2.3 Carbon Nanotubes (CNT) 12.2.3.1 Single-Walled Nanotubes (SWNCTs) 12.2.3.2 Multi-Walled Carbon Nanotubes 12.2.4 Mesoporous Carbon Nanoframes 12.2.5 Carbonaceous Nanospheres 12.2.6 Single-Walled Carbon Nanohorns 12.3 Rare Earth-Doped Photothermal Agents 12.4 Polymeric Photothermal Agents 12.5 Silicon-Based Photothermal Agents 12.6 Titanium-Based Photothermal Agents 12.7 Iron-Based Photothermal Agents 12.8 Conclusions References 13 NIR Fluorescent Nanoprobes and Techniques for Brain Imaging 13.1 Introduction 13.2 Optical Property of Brain Tissue 13.3 NIR Nanoprobes for In Vivo Fluorescence Imaging 13.3.1 Nanomaterial-Based NIR Nanoprobes 13.3.2 Organic Dye-Based NIR Nanoprobes 13.4 NIR Fluorescence Detection System for Brain Imaging 13.5 Non-invasive Brain Imaging Using NIR Nanoprobes 13.5.1 Cerebral Blood Vessels 13.5.1.1 SWNT Probes 13.5.1.2 QD Probes 13.5.1.3 Rare-Earth Nanoprobes 13.5.1.4 Organic Dye Nanoprobes 13.5.2 Brain Tumors 13.5.3 Cerebrovascular Disorders 13.6 Summary and Outlook References Index