ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Near Infrared-Emitting Nanoparticles for Biomedical Applications

دانلود کتاب نانوذرات ساطع کننده مادون قرمز نزدیک برای کاربردهای زیست پزشکی

Near Infrared-Emitting Nanoparticles for Biomedical Applications

مشخصات کتاب

Near Infrared-Emitting Nanoparticles for Biomedical Applications

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 3030320359, 9783030320355 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 391 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Near Infrared-Emitting Nanoparticles for Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوذرات ساطع کننده مادون قرمز نزدیک برای کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface and Summary
Acknowledgements
Contents
1 Optical Properties of Tissues in the Near Infrared: Their Relevance for Optical Bioimaging
	1.1 Optical Properties of Tissues: Physical Origin and Statistical Approach
		1.1.1 Basic Interactions Between Light and Matter
	1.2 Light Propagation in Biological Tissues
	1.3 Properties of Light in the Near Infrared
		1.3.1 Blood
		1.3.2 Water
		1.3.3 Skin
		1.3.4 Tissue Autofluorescence
	1.4 Imaging in the II Near Infrared Window
	1.5 Consequences of Near Infrared Light Propagation in Image Quality and Resolution
	References
2 NIR Autofluorescence: Molecular Origins and Emerging Clinical Applications
	2.1 Introduction
	2.2 NIR Autofluorescence as a Problem
	2.3 NIR Autofluorescence Sources
		2.3.1 Autofluorescence in the Visible
		2.3.2 In Vivo Autofluorescence in the NIR: Plant Sources
		2.3.3 In Vivo Skin Autofluorescence in the NIR
		2.3.4 Other Sources of In Vivo NIR Autofluorescence
	2.4 NIR Autofluorescence as a Solution: Applications
		2.4.1 Surgical Guidance and Diagnostics in Cancer
		2.4.2 Monitoring Ophthalmological Diseases
		2.4.3 Intra-Operative Parathyroid Gland Identification
		2.4.4 Imaging Atherosclerotic Plaque in Coronary Artery Disease
	2.5 Conclusion and Future Perspectives
	References
3 Surface Modification of Near Infrared-Emitting Nanoparticles for Biomedical Applications
	3.1 Introduction
	3.2 Strategies for Surface Modification
	3.3 Conclusion and Challenges in Surface Modification
	References
4 Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging
	4.1 Introduction
	4.2 NIR Emissions from RENPs
		4.2.1 NIR Upconversion Luminescence
		4.2.2 NIR Downshifting Luminescence
	4.3 In Vivo NIR Imaging Using RENPs
		4.3.1 Bioimaging Using NIR UCL
		4.3.2 Bioimaging Using NIR-II Downshifting Luminescence
	4.4 Time-Gated Luminescence Imaging
		4.4.1 Principle of Time-Gated Imaging
		4.4.2 Time-Gated Imaging in NIR-II Window
		4.4.3 Multiplexing Imaging with Tunable Lifetimes
	4.5 Conclusions
	References
5 Recent Advances in Development of NIR-II Fluorescent Agents
	5.1 NIR-II Fluorophores with High Fluorescence Quantum Yields
	5.2 NIR-II Fluorophores with Long Emission Wavelengths
	5.3 Favorable Pharmacokinetics and Biocompatibility
	5.4 Outlook
	References
6 Near Infrared Spectral Imaging of Carbon Nanotubesfor Biomedicine
	6.1 Introduction
	6.2 Optophysical Properties of Single-Walled Carbon Nanotubes
		6.2.1 Intrinsic Bandgap Photoluminescence
		6.2.2 Isolation of Single-Nanotube Chiralities
		6.2.3 Inherent Multiplicity of Nanotube Structures
		6.2.4 Biocompatibility
	6.3 Photoluminescent SWCNTs as Imaging and Sensing Agents
		6.3.1 Structural Properties of Linear SWCNTs
		6.3.2 Advantageous Optical Properties
		6.3.3 Photoluminescence Modulation by Environment
		6.3.4 Multimodal Functionalization of the Nanotube Structure
		6.3.5 Comparison to Other NIR Agents
	6.4 Instrumentation for Near Infrared Spectroscopy-Resolved Imaging
		6.4.1 New Imaging Tools
		6.4.2 NIR Imaging of SWCNTs in Biological Systems
	6.5 Global NIR Hyperspectral Imaging
		6.5.1 Hyperspectral Imaging of SWCNTs in Biological Systems
		6.5.2 Applications for Characterizing Individual Carbon Nanotubes
	6.6 Spectral Imaging in Live Cells
		6.6.1 Applications in Live Cells
		6.6.2 Spectral Imaging of a Sensor for Endolysosomal Lipids
	6.7 Spectral Imaging in Vivo
		6.7.1 Technical Challenges to NIR In Vivo Imaging
		6.7.2 Spectral Imaging in Complex Biological Systems
		6.7.3 Spectral Imaging of the Lipid Sensor in Live Animals
	6.8 Conclusion
		6.8.1 The Challenges of Molecular Identity, Standardization, and Biocompatibility
		6.8.2 Crossroad for Nanotubes: Tool for Basic Research and Translational Biomedicine
	References
7 Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications
	7.1 Near Infrared-Emitting Carbon Nanomaterials
	7.2 Carbon Nanomaterials
		7.2.1 Carbon Nanotubes
		7.2.2 Carbon Dots
		7.2.3 Graphene Dots
	7.3 Synthesis of Carbon Nanomaterials
		7.3.1 Top-Down Synthesis of Nanomaterials
			7.3.1.1 Using Arc-Discharge and Laser Ablation for the Synthesis of Carbon Nanomaterials
		7.3.2 Bottom-Up Synthesis of Carbon Nanomaterials
			7.3.2.1 Carbon Vapor Deposition Reactions
			7.3.2.2 Solvothermal and Microwave Assisted Reactions
	7.4 Biomedical Applications
		7.4.1 NIR Bioimaging
		7.4.2 Biosensors
	7.5 Challenges and Perspectives
	References
8 NIR-Persistent Luminescence Nanoparticles for Bioimaging, Principle and Perspectives
	8.1 Introduction
	8.2 Main Characteristics of the Persistent Luminescence Materials
	8.3 Persistent Luminescence Mechanisms
	8.4 Focus on One Developed Materials ZnGa2O4:Cr Nanoparticles for Persistent Luminescence Applications in the BW1 Range
	8.5 Biocompatibility
	8.6 Excitation Capabilities and Long-Term In Vivo Imaging
	8.7 Strategies Developed to Perform Long-Time Imaging
	8.8 Multimodal Imaging
	8.9 Theranostics Nanoprobes
	8.10 Photodynamic Therapy with PLNPs
	8.11 Photothermal Therapy with PLNPs
	8.12 Perspectives of the NIR-Persistent Luminescence Nanoparticles for Bioimaging
	8.13 Conclusions
	References
9 Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques
	9.1 Introduction
	9.2 Autofluorescence Filtering Strategies
		9.2.1 Spectral Filtering of the Autofluorescence: NIR-II-Emitting Nanoparticles
			9.2.1.1 Carbon Nanotubes
			9.2.1.2 Quantum Dots and Semiconducting Nanoparticles
			9.2.1.3 Rare Earth-Doped Nanoparticles
			9.2.1.4 Polymeric Nanoparticles
		9.2.2 Time-Domain Filtering of Autofluorescence: Time-Gating Techniques
	9.3 Excitation-Free Approaches
		9.3.1 Long-Persistent-Luminescence Nanoparticles
			9.3.1.1 Persistent Luminescence with Inorganic Nanoparticles
			9.3.1.2 Persistent Luminescence with Organic Molecules
		9.3.2 Bioluminescence
		9.3.3 Chemiluminescence
	9.4 Multiphoton Excitation in the NIR-II
	9.5 Conclusions and Perspectives
	References
10 Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections
	Abbreviations
	10.1 Introduction: Why Use Polymer Functionalization of Nanoparticles?
	10.2 Types of NIR-Emitting Nanoparticles
		10.2.1 Organic Dyes and Small-Molecule Probes
		10.2.2 Inorganic Quantum Dots
		10.2.3 Au Nanoparticles
		10.2.4 Carbon Dots, Carbon Nanotubes, Graphene and their Derivatives
		10.2.5 Upconversion or Downconversion Nanoparticles
	10.3 Discussion and Future Prospects
	References
11 Near Infrared Ag2S Quantum Dots: Synthesis, Functionalization, and In Vivo Stem Cell Tracking Applications
	Abbreviations
	11.1 Introduction
	11.2 Synthesis of Ag2S QDs
		11.2.1 Methods for Synthesizing Photoluminescent Ag2S QDs
		11.2.2 Emission Wavelength Regulation of Ag2S QDs
		11.2.3 Synthesis of Multifunctional Ag2S QDs
	11.3 Surface Functionalization of Ag2S QDs
		11.3.1 Preparing Water Soluble and Stable Ag2S QDs
		11.3.2 Surface Functionalization and Biomedical Applications of Ag2S QDs
	11.4 Biocompatibility of Ag2S QDs
		11.4.1 In Vitro Toxicity Study of Ag2S QDs
		11.4.2 In Vivo Toxicity of Ag2S QDs
	11.5 In Vivo Stem Cell Tracking Applications of Ag2S QDs
		11.5.1 Tracking Transplanted Stem Cells for Liver Therapy
		11.5.2 Tracking Stem Cells for Cutaneous Regeneration
		11.5.3 Tracking the Fate of Stem Cells by Ag2S QD-Based Multimodal Imaging
	11.6 Future Prospects
	References
12 Non-plasmonic NIR-Activated Photothermal Agentsfor Photothermal Therapy
	12.1 Introduction
	12.2 Graphene and Its Derivatives
		12.2.1 Graphene
			12.2.1.1 Graphene Oxide
			12.2.1.2 Reduced Graphene Oxide
		12.2.2 Carbon Quantum Nanodots (C-Dots, CQDs)
		12.2.3 Carbon Nanotubes (CNT)
			12.2.3.1 Single-Walled Nanotubes (SWNCTs)
			12.2.3.2 Multi-Walled Carbon Nanotubes
		12.2.4 Mesoporous Carbon Nanoframes
		12.2.5 Carbonaceous Nanospheres
		12.2.6 Single-Walled Carbon Nanohorns
	12.3 Rare Earth-Doped Photothermal Agents
	12.4 Polymeric Photothermal Agents
	12.5 Silicon-Based Photothermal Agents
	12.6 Titanium-Based Photothermal Agents
	12.7 Iron-Based Photothermal Agents
	12.8 Conclusions
	References
13 NIR Fluorescent Nanoprobes and Techniques for Brain Imaging
	13.1 Introduction
	13.2 Optical Property of Brain Tissue
	13.3 NIR Nanoprobes for In Vivo Fluorescence Imaging
		13.3.1 Nanomaterial-Based NIR Nanoprobes
		13.3.2 Organic Dye-Based NIR Nanoprobes
	13.4 NIR Fluorescence Detection System for Brain Imaging
	13.5 Non-invasive Brain Imaging Using NIR Nanoprobes
		13.5.1 Cerebral Blood Vessels
			13.5.1.1 SWNT Probes
			13.5.1.2 QD Probes
			13.5.1.3 Rare-Earth Nanoprobes
			13.5.1.4 Organic Dye Nanoprobes
		13.5.2 Brain Tumors
		13.5.3 Cerebrovascular Disorders
	13.6 Summary and Outlook
	References
Index




نظرات کاربران