ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems

دانلود کتاب بهینه سازی با الهام از طبیعت در فرایندها و سیستم های تولید پیشرفته

Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems

مشخصات کتاب

Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems

دسته بندی: فن آوری
ویرایش:  
نویسندگان: ,   
سری: Artificial Intelligence (AI) in Engineering 
ISBN (شابک) : 2020028003, 9781003081166 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 279 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 24


در صورت تبدیل فایل کتاب Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بهینه سازی با الهام از طبیعت در فرایندها و سیستم های تولید پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بهینه سازی با الهام از طبیعت در فرایندها و سیستم های تولید پیشرفته

سیستم تولید در پرتو Industry 4.0 تغییرات و تحولات اساسی را پشت سر می گذارد. فناوری های جدیدتر تولید در حال توسعه و بکارگیری هستند. نیاز به بهینه سازی این تکنیک ها در شرایط مختلف با توجه به مواد، ابزارها، پیکربندی محصول و پارامترهای فرآیند وجود دارد. این کتاب هوش محاسباتی به کار رفته در تولید را پوشش می دهد. این بهینه‌سازی فرآیندها با الهام از طبیعت و طراحی و توسعه آنها در سیستم‌های تولیدی را مورد بحث قرار می‌دهد. تمام فرآیندهای تولید را در هر دو سطح کلان و خرد بررسی می کند و فلسفه های تولید را ارائه می دهد. تولید غیر متعارف، مشکلات صنعتی واقعی و مطالعات موردی، تحقیق در مورد فرآیندهای تولیدی، و ارتباط همه اینها با Industry 4.0 نیز گنجانده شده است. محققان، دانشجویان، دانشگاهیان و متخصصان صنعت این عنوان مرجع را بسیار مفید خواهند یافت.


توضیحاتی درمورد کتاب به خارجی

The manufacturing system is going through substantial changes and developments in light of Industry 4.0. Newer manufacturing technologies are being developed and applied. There is a need to optimize these techniques when applied in different circumstances with respect to materials, tools, product configurations, and process parameters. This book covers computational intelligence applied to manufacturing. It discusses nature-inspired optimization of processes and their design and development in manufacturing systems. It explores all manufacturing processes, at both macro and micro levels, and offers manufacturing philosophies. Nonconventional manufacturing, real industry problems and case studies, research on generative processes, and relevance of all this to Industry 4.0 is also included. Researchers, students, academicians, and industry professionals will find this reference title very useful.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Foreword
Preface
Editors
Contributors
Chapter 1 Investigation on Process Parameters of EN-08 Steel by Using DoE and Multi-Objective Genetic Algorithm Approach
	1.1 Introduction
	1.2 Materials and Methodology
	1.3 Results and Discussion
		1.3.1 Rank Identification for Cutting Time (CT)
		1.3.2 Optimal Solution for CT
		1.3.3 Rank Identification for Surface Roughness (Ra)
		1.3.4 Optimal Solution for RA
		1.3.5 Contour Plot Analysis for Cutting Time and Surface Roughness
		1.3.6 Interaction Plot for Cutting Time and Surface Roughness
		1.3.7 Adequacy Check Analysis
		1.3.8 Regression Modeling Equation
		1.3.9 MOGA Optimization Technique
	1.4 Conclusion
	References
Chapter 2 Multi-Objective Optimization for Improving Performance Characteristics of Novel Curved EDM Process Using Jaya Algorithm
	2.1 Introduction
	2.2 Experimental Methodology
		2.2.1 Design, Development and Operation of the Novel Curved EDM Mechanism
		2.2.2 Experimental Investigation of Curved Machining Mechanism
		2.2.3 Statistical Analysis for the Machining Responses Using Analysis of Variance
		2.2.4 Multi-objective Optimization for the Optimum Machining Responses
		2.2.5 Multiple Regression Analysis
	2.3 Jaya Algorithm
	2.4 Results and Discussion
	2.5 Conclusions
	References
Chapter 3 Artificial Neural Networks (ANNs) for Prediction and Optimization in Friction Stir Welding Process: An Overview and Future Trends
	3.1 Friction Stir Welding (FSW) Process
		3.1.1 FSW Process Parameters
	3.2 Artificial Neural Networks (ANNs)
		3.2.1 Applications of ANNs
	3.3 ANN Utilization in Friction Stir Welding
	3.4 Conclusion and Future Trends
	Acknowledgements
	References
Chapter 4 Energy-Efficient Cluster Head Selection for Manufacturing Processes Using Modified Honeybee Mating Optimization in Wireless Sensor Networks
	4.1 Introduction
	4.2 Literature Review
	4.3 Proposed System
		4.3.1 Honeybee Optimization (HBO)
		4.3.2 Least Mean Squares (LMS) Classification
		4.3.3 Mathematical Description of LMS and Its Variants
	4.4 Implementation
		4.4.1 Modified Honeybee Mating Optimization Algorithm
		4.4.2 Simulation Parameters
	4.5 Results and Discussion
	4.6 Conclusion
	Acknowledgment
	References
Chapter 5 Multiobjective Design Optimization of Power Take-Off (PTO) Gear Box Through NSGA II
	5.1 Introduction
	5.2 Mathematical Formulation of Multiobjective Problems
	5.3 Non-dominated Sorting Genetic Algorithm – NSGA II
	5.4 Problem Statement of PTO Gear Box Design Optimization
		5.4.1 Case Study
		5.4.2 Objective Functions and Constraints
		5.4.3 Design Variables
	5.5 Problem Formulation for Optimization
		5.5.1 Planetary Gear Design Optimization Formulation
		5.5.2 Variable Bounds
		5.5.3 Input Parameters
	5.6 Results and Discussion
		5.6.1 Condition for Proper Assembly
	5.7 Conclusions
	References
Chapter 6 Improving the Performance of Machining Processes Using Opposition-Based Learning Civilized Swarm Optimization
	6.1 Introduction
	6.2 Methodology
		6.2.1 Particle Swarm Optimization
		6.2.2 Society Civilization Algorithm
		6.2.3 Civilized Swarm Optimization
		6.2.4 Opposition-Based Learning Civilized Swarm Optimization
	6.3 Application Examples
		6.3.1 Optimization of Abrasive Water Jet Machining (AWJM) Process
		6.3.2 Objective Function
			6.3.2.1 Constraint
			6.3.2.2 Variable Bounds
			6.3.3 Results of Optimization of AWJM Process Using Opposition-Based CSO Algorithm
			6.3.4 Optimization of CNC Turning Process
			6.3.5 Results of Optimization of CNC Turning Process Using Opposition-Based CSO Algorithm
	6.4 Conclusions
	References
Chapter 7 Application of Particle Swarm Optimization Method to Availability Optimization of Thermal Power Plants
	7.1 Introduction
	7.2 System Description
		7.2.1 Assumptions
		7.2.2 Nomenclature
		7.2.3 Availability Simulation Modeling of Thermal Power Plants
	7.3 Results and Discussion of Markov-Based Analysis
	7.4 Particle Swarm Optimization (PSO) to Optimize the Availability of TPPs
	7.5 Conclusion
	References
Chapter 8 Optimization of Incremental Sheet Forming Process Using Artificial Intelligence-Based Techniques
	8.1 Introduction
	8.2 Materials and Methods
		8.2.1 Development of ANN Model to Predict Forming Force
		8.2.2 Support Vector Machine (SVM) Model
		8.2.3 Gaussian Process Regression (GPR) Model
	8.3 Results and Discussion
		8.3.1 Experimental Results and Analysis
		8.3.2 Prediction of Axial Peak Forces Using AI Techniques
		8.3.3 HLANN Used for Prediction of Maximum Axial Force
		8.3.4 Comparison of the Estimated and Experimental Values of Axial Forces
	8.4 Conclusions
	References
Chapter 9 Development of Non-dominated Genetic Algorithm Interface for Parameter Optimization of Selected Electrochemical-Based Machining Processes
	9.1 Introduction
	9.2 Methodology
		9.2.1 Non-dominated Sorting Genetic Algorithm – Graphical User Interface (NSGA-GUI)
	9.3 Applications of NSGA-GUI in Advanced Machining Processes
		9.3.1 Electrochemical Machining (ECM)
		9.3.2 Electrochemical Micromachining (EMM)
		9.3.3 Electrochemical Turning (ECT)
	9.4 Conclusions
	References
Chapter 10 ANN Modeling of Surface Roughness and Thrust Force During Drilling of SiC Filler-Incorporated Glass/Epoxy Composites
	10.1 Introduction
	10.2 Materials and Experimentation
		10.2.1 Materials
		10.2.2 Drilling Test
	10.3 ANN Modeling and Prediction of Thrust Force and Surface Roughness
	10.4 Results and Discussion
		10.4.1 Experimental Results
		10.4.2 Regression Analysis
		10.4.3 ANN Modeling and Prediction
	10.5 Conclusions
	References
Chapter 11 Multi-objective Optimization of Laser-Assisted Micro-hole Drilling with Evolutionary Algorithms
	11.1 Introduction
	11.2 Formulation of the Problem
	11.3 Use of Nature-Inspired Algorithms for Optimization
		11.3.1 Genetic Algorithms
		11.3.2 Particle Swarm Optimization (PSO)
	11.4 Results and Discussion
		11.4.1 GA Applied to Micro-hole Fabrication Using Laser Energy
		11.4.2 PSO Applied to Micro-hole Fabrication Using Laser Energy
		11.4.3 Comparison between GA and PSO
	11.5 Conclusion
	References
Chapter 12 Modeling and Pareto Optimization of Burnishing Process for Surface Roughness and Microhardness
	12.1 Introduction
	12.2 Motivation
	12.3 Experiment Methodology and Model Development
		12.3.1 Empirical Model Development for Surface Roughness and Microhardness
		12.3.2 The Development of Pareto Front
		12.3.3 Pareto Optimal Solution
	12.4 Particle Swarm Optimization
		12.4.1 Multi-objective Particle Swarm Optimization
		12.4.2 Algorithm for MOPSO
			12.4.2.1 Initialize the Population
			12.4.2.2 Initialize the Velocity
			12.4.2.3 Evaluation of the Fitness
			12.4.2.4 Best Fitness and Position
			12.4.2.5 Non-dominated Points
			12.4.2.6 Generate Hypercube
			12.4.2.7 Select Leader
			12.4.2.8 Update Velocity
			12.4.2.9 Mutation Operator
			12.4.2.10 Maintain the Particles in Search Space
			12.4.2.11 Update Repository
			12.4.2.12 Update the Best Positions
		12.4.3 MOPSO for Surface Roughness and Microhardness
	12.5 Performance Assessment of the Pareto Front
		12.5.1 Metrics Evaluating Closeness to the Pareto Front
		12.5.2 Metrics Evaluating Diversity Among Non-dominated Solutions
	12.6 Conclusions
	References
Chapter 13 Selection of Components and Their Optimum Manufacturing Tolerance for Selective Assembly Technique Using Intelligent Water Drops Algorithm to Minimize Manufacturing Cost
	13.1 Introduction
	13.2 Related Research
		13.2.1 Selective Assembly
		13.2.2 Intelligent Water Drops Algorithm
		13.2.3 Inference from the Past Works
		13.2.4 Problem Background and Definition
	13.3 Methodology
	13.4 Numerical Illustration
	13.5 Results and Discussion
	13.6 Conclusion
	References
Chapter 14 Enhancing the Surface Roughness Characteristics of Selective Inhibition Sintered HDPE Parts: An Integrated Approach of RSM and Krill Herd Algorithm
	14.1 Introduction
	14.2 Proposed Methodology
		14.2.1 Response Surface Methodology
		14.2.2 Krill Herd Algorithm
	14.3 Experimental Details
	14.4 Results and Discussion
		14.4.1 Statistical Analysis of the Developed Models
		14.4.2 Influence of Sintering Parameters on Roughness Characteristics
	14.5 Multi-objective Optimization using Krill Herd Algorithm
	14.6 Conclusion
	Acknowledgement
	References
Chapter 15 Optimization of Abrasive Water Jet Machining Parameters of Al/Tic Using Response Surface Methodology and Modified Artificial Bee Colony Algorithm
	15.1 Introduction
	15.2 Materials and Methods
	15.3 Results and Discussion
		15.3.2 Effect of Input Parameters on MRR
		15.3.3 Effect of Input Parameters on SR
	15.4 Bee Colony Algorithm
		15.4.1 Proposed Modified ABC (MABC) Algorithm
		15.4.2 Computational Procedure of the Proposed MABC Algorithm
	15.5 Conclusions
	References
Index




نظرات کاربران