دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Ganesh M. Kakandikar, Dinesh G. Thakur سری: Artificial Intelligence (AI) in Engineering ISBN (شابک) : 2020028003, 9781003081166 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 279 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازی با الهام از طبیعت در فرایندها و سیستم های تولید پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستم تولید در پرتو Industry 4.0 تغییرات و تحولات اساسی را پشت سر می گذارد. فناوری های جدیدتر تولید در حال توسعه و بکارگیری هستند. نیاز به بهینه سازی این تکنیک ها در شرایط مختلف با توجه به مواد، ابزارها، پیکربندی محصول و پارامترهای فرآیند وجود دارد. این کتاب هوش محاسباتی به کار رفته در تولید را پوشش می دهد. این بهینهسازی فرآیندها با الهام از طبیعت و طراحی و توسعه آنها در سیستمهای تولیدی را مورد بحث قرار میدهد. تمام فرآیندهای تولید را در هر دو سطح کلان و خرد بررسی می کند و فلسفه های تولید را ارائه می دهد. تولید غیر متعارف، مشکلات صنعتی واقعی و مطالعات موردی، تحقیق در مورد فرآیندهای تولیدی، و ارتباط همه اینها با Industry 4.0 نیز گنجانده شده است. محققان، دانشجویان، دانشگاهیان و متخصصان صنعت این عنوان مرجع را بسیار مفید خواهند یافت.
The manufacturing system is going through substantial changes and developments in light of Industry 4.0. Newer manufacturing technologies are being developed and applied. There is a need to optimize these techniques when applied in different circumstances with respect to materials, tools, product configurations, and process parameters. This book covers computational intelligence applied to manufacturing. It discusses nature-inspired optimization of processes and their design and development in manufacturing systems. It explores all manufacturing processes, at both macro and micro levels, and offers manufacturing philosophies. Nonconventional manufacturing, real industry problems and case studies, research on generative processes, and relevance of all this to Industry 4.0 is also included. Researchers, students, academicians, and industry professionals will find this reference title very useful.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Foreword Preface Editors Contributors Chapter 1 Investigation on Process Parameters of EN-08 Steel by Using DoE and Multi-Objective Genetic Algorithm Approach 1.1 Introduction 1.2 Materials and Methodology 1.3 Results and Discussion 1.3.1 Rank Identification for Cutting Time (CT) 1.3.2 Optimal Solution for CT 1.3.3 Rank Identification for Surface Roughness (Ra) 1.3.4 Optimal Solution for RA 1.3.5 Contour Plot Analysis for Cutting Time and Surface Roughness 1.3.6 Interaction Plot for Cutting Time and Surface Roughness 1.3.7 Adequacy Check Analysis 1.3.8 Regression Modeling Equation 1.3.9 MOGA Optimization Technique 1.4 Conclusion References Chapter 2 Multi-Objective Optimization for Improving Performance Characteristics of Novel Curved EDM Process Using Jaya Algorithm 2.1 Introduction 2.2 Experimental Methodology 2.2.1 Design, Development and Operation of the Novel Curved EDM Mechanism 2.2.2 Experimental Investigation of Curved Machining Mechanism 2.2.3 Statistical Analysis for the Machining Responses Using Analysis of Variance 2.2.4 Multi-objective Optimization for the Optimum Machining Responses 2.2.5 Multiple Regression Analysis 2.3 Jaya Algorithm 2.4 Results and Discussion 2.5 Conclusions References Chapter 3 Artificial Neural Networks (ANNs) for Prediction and Optimization in Friction Stir Welding Process: An Overview and Future Trends 3.1 Friction Stir Welding (FSW) Process 3.1.1 FSW Process Parameters 3.2 Artificial Neural Networks (ANNs) 3.2.1 Applications of ANNs 3.3 ANN Utilization in Friction Stir Welding 3.4 Conclusion and Future Trends Acknowledgements References Chapter 4 Energy-Efficient Cluster Head Selection for Manufacturing Processes Using Modified Honeybee Mating Optimization in Wireless Sensor Networks 4.1 Introduction 4.2 Literature Review 4.3 Proposed System 4.3.1 Honeybee Optimization (HBO) 4.3.2 Least Mean Squares (LMS) Classification 4.3.3 Mathematical Description of LMS and Its Variants 4.4 Implementation 4.4.1 Modified Honeybee Mating Optimization Algorithm 4.4.2 Simulation Parameters 4.5 Results and Discussion 4.6 Conclusion Acknowledgment References Chapter 5 Multiobjective Design Optimization of Power Take-Off (PTO) Gear Box Through NSGA II 5.1 Introduction 5.2 Mathematical Formulation of Multiobjective Problems 5.3 Non-dominated Sorting Genetic Algorithm – NSGA II 5.4 Problem Statement of PTO Gear Box Design Optimization 5.4.1 Case Study 5.4.2 Objective Functions and Constraints 5.4.3 Design Variables 5.5 Problem Formulation for Optimization 5.5.1 Planetary Gear Design Optimization Formulation 5.5.2 Variable Bounds 5.5.3 Input Parameters 5.6 Results and Discussion 5.6.1 Condition for Proper Assembly 5.7 Conclusions References Chapter 6 Improving the Performance of Machining Processes Using Opposition-Based Learning Civilized Swarm Optimization 6.1 Introduction 6.2 Methodology 6.2.1 Particle Swarm Optimization 6.2.2 Society Civilization Algorithm 6.2.3 Civilized Swarm Optimization 6.2.4 Opposition-Based Learning Civilized Swarm Optimization 6.3 Application Examples 6.3.1 Optimization of Abrasive Water Jet Machining (AWJM) Process 6.3.2 Objective Function 6.3.2.1 Constraint 6.3.2.2 Variable Bounds 6.3.3 Results of Optimization of AWJM Process Using Opposition-Based CSO Algorithm 6.3.4 Optimization of CNC Turning Process 6.3.5 Results of Optimization of CNC Turning Process Using Opposition-Based CSO Algorithm 6.4 Conclusions References Chapter 7 Application of Particle Swarm Optimization Method to Availability Optimization of Thermal Power Plants 7.1 Introduction 7.2 System Description 7.2.1 Assumptions 7.2.2 Nomenclature 7.2.3 Availability Simulation Modeling of Thermal Power Plants 7.3 Results and Discussion of Markov-Based Analysis 7.4 Particle Swarm Optimization (PSO) to Optimize the Availability of TPPs 7.5 Conclusion References Chapter 8 Optimization of Incremental Sheet Forming Process Using Artificial Intelligence-Based Techniques 8.1 Introduction 8.2 Materials and Methods 8.2.1 Development of ANN Model to Predict Forming Force 8.2.2 Support Vector Machine (SVM) Model 8.2.3 Gaussian Process Regression (GPR) Model 8.3 Results and Discussion 8.3.1 Experimental Results and Analysis 8.3.2 Prediction of Axial Peak Forces Using AI Techniques 8.3.3 HLANN Used for Prediction of Maximum Axial Force 8.3.4 Comparison of the Estimated and Experimental Values of Axial Forces 8.4 Conclusions References Chapter 9 Development of Non-dominated Genetic Algorithm Interface for Parameter Optimization of Selected Electrochemical-Based Machining Processes 9.1 Introduction 9.2 Methodology 9.2.1 Non-dominated Sorting Genetic Algorithm – Graphical User Interface (NSGA-GUI) 9.3 Applications of NSGA-GUI in Advanced Machining Processes 9.3.1 Electrochemical Machining (ECM) 9.3.2 Electrochemical Micromachining (EMM) 9.3.3 Electrochemical Turning (ECT) 9.4 Conclusions References Chapter 10 ANN Modeling of Surface Roughness and Thrust Force During Drilling of SiC Filler-Incorporated Glass/Epoxy Composites 10.1 Introduction 10.2 Materials and Experimentation 10.2.1 Materials 10.2.2 Drilling Test 10.3 ANN Modeling and Prediction of Thrust Force and Surface Roughness 10.4 Results and Discussion 10.4.1 Experimental Results 10.4.2 Regression Analysis 10.4.3 ANN Modeling and Prediction 10.5 Conclusions References Chapter 11 Multi-objective Optimization of Laser-Assisted Micro-hole Drilling with Evolutionary Algorithms 11.1 Introduction 11.2 Formulation of the Problem 11.3 Use of Nature-Inspired Algorithms for Optimization 11.3.1 Genetic Algorithms 11.3.2 Particle Swarm Optimization (PSO) 11.4 Results and Discussion 11.4.1 GA Applied to Micro-hole Fabrication Using Laser Energy 11.4.2 PSO Applied to Micro-hole Fabrication Using Laser Energy 11.4.3 Comparison between GA and PSO 11.5 Conclusion References Chapter 12 Modeling and Pareto Optimization of Burnishing Process for Surface Roughness and Microhardness 12.1 Introduction 12.2 Motivation 12.3 Experiment Methodology and Model Development 12.3.1 Empirical Model Development for Surface Roughness and Microhardness 12.3.2 The Development of Pareto Front 12.3.3 Pareto Optimal Solution 12.4 Particle Swarm Optimization 12.4.1 Multi-objective Particle Swarm Optimization 12.4.2 Algorithm for MOPSO 12.4.2.1 Initialize the Population 12.4.2.2 Initialize the Velocity 12.4.2.3 Evaluation of the Fitness 12.4.2.4 Best Fitness and Position 12.4.2.5 Non-dominated Points 12.4.2.6 Generate Hypercube 12.4.2.7 Select Leader 12.4.2.8 Update Velocity 12.4.2.9 Mutation Operator 12.4.2.10 Maintain the Particles in Search Space 12.4.2.11 Update Repository 12.4.2.12 Update the Best Positions 12.4.3 MOPSO for Surface Roughness and Microhardness 12.5 Performance Assessment of the Pareto Front 12.5.1 Metrics Evaluating Closeness to the Pareto Front 12.5.2 Metrics Evaluating Diversity Among Non-dominated Solutions 12.6 Conclusions References Chapter 13 Selection of Components and Their Optimum Manufacturing Tolerance for Selective Assembly Technique Using Intelligent Water Drops Algorithm to Minimize Manufacturing Cost 13.1 Introduction 13.2 Related Research 13.2.1 Selective Assembly 13.2.2 Intelligent Water Drops Algorithm 13.2.3 Inference from the Past Works 13.2.4 Problem Background and Definition 13.3 Methodology 13.4 Numerical Illustration 13.5 Results and Discussion 13.6 Conclusion References Chapter 14 Enhancing the Surface Roughness Characteristics of Selective Inhibition Sintered HDPE Parts: An Integrated Approach of RSM and Krill Herd Algorithm 14.1 Introduction 14.2 Proposed Methodology 14.2.1 Response Surface Methodology 14.2.2 Krill Herd Algorithm 14.3 Experimental Details 14.4 Results and Discussion 14.4.1 Statistical Analysis of the Developed Models 14.4.2 Influence of Sintering Parameters on Roughness Characteristics 14.5 Multi-objective Optimization using Krill Herd Algorithm 14.6 Conclusion Acknowledgement References Chapter 15 Optimization of Abrasive Water Jet Machining Parameters of Al/Tic Using Response Surface Methodology and Modified Artificial Bee Colony Algorithm 15.1 Introduction 15.2 Materials and Methods 15.3 Results and Discussion 15.3.2 Effect of Input Parameters on MRR 15.3.3 Effect of Input Parameters on SR 15.4 Bee Colony Algorithm 15.4.1 Proposed Modified ABC (MABC) Algorithm 15.4.2 Computational Procedure of the Proposed MABC Algorithm 15.5 Conclusions References Index