دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Santosh Kumar Das, Thanh-Phong Dao, Thinagaran Perumal سری: Springer Tracts in Nature-Inspired Computing ISBN (شابک) : 9813361948, 9789813361942 ناشر: Springer سال نشر: 2021 تعداد صفحات: 295 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Nature-Inspired Computing for Smart Application Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات مبتنی بر طبیعت برای طراحی برنامه های هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب در درجه اول بر روی رویکرد الهام گرفته از طبیعت برای طراحی برنامه های کاربردی هوشمند تمرکز دارد. این شامل چندین پارادایم پیاده سازی مانند طراحی و برنامه ریزی مسیر شبکه بی سیم، مکانیزم امنیتی و پیاده سازی برای گره های پویا و همچنین استاتیک، روش یادگیری رایانش ابری، کاوش و مدیریت داده ها، تجزیه و تحلیل و بهینه سازی داده ها، تصمیم گیری در محیط های متضاد و غیره است. این کتاب اساساً پیشرفتهای تحقیقاتی اخیر در زمینه مهندسی و علم را برجسته میکند.
This book focuses primarily on the nature-inspired approach for designing smart applications. It includes several implementation paradigms such as design and path planning of wireless network, security mechanism and implementation for dynamic as well as static nodes, learning method of cloud computing, data exploration and management, data analysis and optimization, decision taking in conflicting environment, etc. The book fundamentally highlights the recent research advancements in the field of engineering and science.
Preface List of Reviewers Contents Editors and Contributors Smart Design and Its Applications: Challenges and Techniques 1 Introduction 2 Some Applications for Smart Design 2.1 City and Environment 2.2 Intelligent Networking 2.3 Security and Management 3 Some Techniques for Smart Design 4 Conclusions References City and Environment Automatic Generation Control Scheme for Power Quality Improvement of Multi-source Power Generating System with Secondary Controller Optimization Using Parameter-Setting-Free Harmony Search 1 Introduction 2 Single-Area Multi-source Power System Modeling 3 Controller Design 4 Proposed Parameter-Setting-Free Harmony Search Algorithm-Tuned PID Controller 5 Simulation Results and Discussions 6 Conclusion References Environmental Sound Classification Using Neural Network and Deep Learning 1 Introduction 1.1 Scope 2 Related Work 3 Problem Formulation 3.1 Segmenting an Audio Signal Into Windows 4 Feature Extraction 4.1 Features Used for Training the Neural Network 5 Designing the Cost Function for Bayesian Regularised Neural Network 5.1 Over-Fitting and Regularization of Neural Networks 5.2 Bayesian Regularization 6 Bayesian Regularised Neural Networks for Urban Sound Noise Classification: A Deep Learning Approach 6.1 Deep Neural Network Design 6.2 Novel Design: Two Input-Output Neural Network Model 6.3 Classification of Multiple Sound Source 6.4 Novel Approach: Multi-label Classification Using Bayesian Regularized Fitnet Model and Deep Lerning Approach 7 Conclusion and Future Work 8 Problems 8.1 Feature Extraction 8.2 Designing of Optimal Neural Network 8.3 Single Label Detection 8.4 Multi Label Detection References Feature Selection Method Using CFO and Rough Sets for Medical Dataset 1 Introduction 2 Preliminaries 2.1 Central Force Optimization 2.2 Rough Set Theory 3 Proposed Algorithm 3.1 Preprocessing of Gene Expression Data 3.2 Fitness Function 4 Experimental Result 4.1 Parameter Setting and Datasets 4.2 Results and Discussion 5 Conclusion References Fuzzy-Based Optimal Solution for Minimization of Loss of Company Based on Uncertain Environment 1 Introduction 2 Related Works 3 Proposed Method 4 Simulation and Analysis 5 Conclusions References Intelligent Networking Impacts of Computational Techniques for Wireless Sensor Networks 1 Introduction 1.1 WSN: Basic Introduction 1.2 WSN: Basic Application Area 2 Need of Optimization 3 Description of Applied Algorithm 3.1 Dragonfly Algorithm 3.2 Quasi-opposition Atom Search Optimization (QOASO) Algorithm 3.3 Pathfinder Algorithm (PA) 3.4 Salp Swarm Algorithm 4 Optimization Techniques Applied in WSN 4.1 Modeling of Consumption of Energy 4.2 Path Loss Model 4.3 System Lifetime Model 4.4 Coverage Model 4.5 Multi-objective Optimization Problem 5 Performance Evaluation 6 Conclusion References Efficient Node Deployment Based on Immune-Inspired Computing Algorithm for Wireless Sensor Networks 1 Introduction 2 Multi-objective Immune Algorithm 3 Optimal Deployment 3.1 Adjacent Distance 3.2 Number of Sensor Nodes 4 First Algorithm: Immune-Based Node Deployment Algorithm 4.1 Problem Formulation 4.2 Immune-Based Node Deployment Algorithm 5 Second Algorithm: Centralized Voronoi-Based Immune Deployment Algorithm 5.1 Problem Formulation 5.2 Centralized Voronoi-Based Immune Deployment Algorithm 6 Experimental Results 6.1 Binary Model-Based Simulations 6.2 Probabilistic Model-Based Experiment 7 Conclusion References An Efficient Routing in Wireless Sensor Network: An Application of Grey Wolf Optimization 1 Introduction 1.1 Motivation for the Study 1.2 Contribution of This Study 2 Literature Review 2.1 Application of Evolutionary Algorithms & Swarm Intelligence 2.2 Grey Wolf Optimizer—Swarm Intelligence Technique with Hierarchy 3 Research Problem 3.1 Problem Statement 3.2 Model Formulation 4 Results 4.1 Experimental Design 4.2 Computational Results: 5 Solution Approach 5.1 Grey Wolf Optimization 5.2 Aspects of Grey Wolf Optimization 5.3 Modified Grey Wolf Optimization 5.4 Results Obtained 6 Conclusion References Coverage Optimization using Nature-Inspired Algorithm for Directional Sensor Networks 1 Introduction 2 Directional Sensor Network 2.1 Directional Detecting Model 2.2 Coverage Rate for Sensing Adjustment 3 Coverage Issues in DSN 3.1 Area Coverage 3.2 Target Coverage 3.3 Barrier Coverage 4 Coverage Optimization 4.1 Particle Swarm Optimization (PSO) Algorithm for Area Coverage Issue 4.2 Memetic Algorithm for Target Coverage Issue 5 Conclusion References Security and Management Flower Pollination Optimization-Based Security Enhancement Technique for Wireless Sensor Network 1 Introduction 2 Related Work 3 Cryptography in WSNs 4 Selection of Algorithms 5 Key Management Schemes 6 Node Deployment in WSN 7 Flower Pollination Algorithm 8 Result Analysis 9 Conclusion References Fuzzy Quadratic Programming Based Conflicting Strategy Management Technique for Company 1 Introduction 2 Literature Review 3 Proposed Method 4 Simulation and Analysis 5 Conclusions References A Novel Multilevel Classifier Hybrid Model for Intrusion Detection Using Machine Learning 1 Introduction 2 Related Work 3 Theoretic Aspects of Techniques 3.1 Particle Swarm Optimization Techniques 3.2 Instance-Based Learning on K (IBK) 3.3 Random Tree 3.4 KDD Cup’99 Dataset 4 Proposed Single-Level Hybrid Intrusion Detection Model 4.1 A Multilevel Hybrid Classifier IDS Model 5 Experimental Results and Discussion 6 Conclusions References Maintaining Manpower in Technical College Using Fusion of Quadratic Programming and Fuzzy Logic 1 Introduction 2 Literature Review 3 Preliminaries 3.1 Quadratic Programming 3.2 Fuzzy Logic 4 Proposed Method 4.1 Preliminary Assumption 4.2 Mathematical Modelling 5 Simulation and Analysis 6 Conclusions References