دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الگوریتم ها و ساختارهای داده ویرایش: 1 نویسندگان: S. Balamurugan (editor), Anupriya Jain (editor), Sachin Sharma (editor), Dinesh Goyal (editor), Sonia Duggal (editor), Seema Sharma (editor) سری: ISBN (شابک) : 111968174X, 9781119681748 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 384 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب الگوریتم های الهام گرفته از طبیعت و کاربردهای آنها: یادگیری ماشین، الگوریتم های الهام گرفته از طبیعت
در صورت تبدیل فایل کتاب Nature Inspired Algorithms and Their Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های الهام گرفته از طبیعت و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف از طراحی این کتاب به تصویر کشیدن کاربردهای عملی خاصی از محاسبات الهام گرفته از طبیعت در یادگیری ماشین برای درک بهتر دنیای اطرافمان است. تمرکز روی به تصویر کشیدن و ارائه پیشرفتهای اخیر در زمینههایی است که در آن الگوریتمهای الهامگرفته از طبیعت بهطور خاص طراحی و به کار میروند تا مسائل پیچیده دنیای واقعی در تجزیه و تحلیل دادهها و تشخیص الگو را با استفاده از راهحلهای دامنه خاص حل کنند. الگوریتمهای مختلف الهامگرفته از طبیعت و کاربردهای چند رشتهای آنها (در مهندسی مکانیک، مهندسی برق، یادگیری ماشین، پردازش تصویر، دادهکاوی و حوزههای شبکههای بیسیم به تفصیل آمده است، که این کتاب را به یک راهنمای مرجع مفید تبدیل میکند.
The purpose of designing this book is to portray certain practical applications of nature-inspired computation in machine learning for the better understanding of the world around us. The focus is to portray and present recent developments in the areas where nature- inspired algorithms are specifically designed and applied to solve complex real-world problems in data analytics and pattern recognition, by means of domain-specific solutions. Various nature-inspired algorithms and their multidisciplinary applications (in mechanical engineering, electrical engineering, machine learning, image processing, data mining and wireless network domains are detailed, which will make this book a handy reference guide.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Introduction to Nature-Inspired Computing 1.1 Introduction 1.2 Aspiration From Nature 1.3 Working of Nature 1.4 Nature-Inspired Computing 1.4.1 Autonomous Entity 1.5 General Stochastic Process of Nature-Inspired Computation 1.5.1 NIC Categorization 1.5.1.1 Bioinspired Algorithm 1.5.1.2 Swarm Intelligence 1.5.1.3 Physical Algorithms 1.5.1.4 Familiar NIC Algorithms References 2 Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning 2.1 Introduction of Genetic Algorithm 2.1.1 Background of GA 2.1.2 Why Natural Selection Theory Compared With the Search Heuristic Algorithm? 2.1.3 Working Sequence of Genetic Algorithm 2.1.3.1 Population 2.1.3.2 Fitness Among the Individuals 2.1.3.3 Selection of Fitted Individuals 2.1.3.4 Crossover Point 2.1.3.5 Mutation 2.1.4 Application of Machine Learning in GA 2.1.4.1 Genetic Algorithm Role in Feature Selection for ML Problem 2.1.4.2 Traveling Salesman Problem 2.1.4.3 Blackjack—A Casino Game 2.1.4.4 Pong Against AI—Evolving Agents (Reinforcement Learning) Using GA 2.1.4.5 SNAKE AI—Game 2.1.4.6 Genetic Algorithm’s Role in Neural Network 2.1.4.7 Solving a Battleship Board Game as an Optimization Problem Which Was Initially Released by Milton Bradley in 1967 2.1.4.8 Frozen Lake Problem From OpenAI Gym 2.1.4.9 N-Queen Problem 2.1.5 Application of Data Mining in GA 2.1.5.1 Association Rules Generation 2.1.5.2 Pattern Classification With Genetic Algorithm 2.1.5.3 Genetic Algorithms in Stock Market Data Mining Optimization 2.1.5.4 Market Basket Analysis 2.1.5.5 Job Scheduling 2.1.5.6 Classification Problem 2.1.5.7 Hybrid Decision Tree—Genetic Algorithm to Data Mining 2.1.5.8 Genetic Algorithm—Optimization of Data Mining in Education 2.1.6 Advantages of Genetic Algorithms 2.1.7 Genetic Algorithms Demerits in the Current Era 2.2 Introduction to Artificial Bear Optimization (ABO) 2.2.1 Bear’s Nasal Cavity 2.2.2 Artificial Bear ABO Gist Algorithm: Pseudo Algorithm: Implementation: 2.2.3 Implementation Based on Requirement 2.2.3.1 Market Place 2.2.3.2 Industry-Specific 2.2.3.3 Semi-Structured or Unstructured Data 2.2.4 Merits of ABO 2.3 Performance Evaluation 2.4 What is Next? References 3 Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique 3.1 Introduction 3.1.1 Example of Optimization Process 3.1.2 Components of Optimization Algorithms 3.1.3 Optimization Techniques Based on Solutions 3.1.3.1 Optimization Techniques Based on Algorithms 3.1.4 Characteristics 3.1.5 Classes of Heuristic Algorithms 3.1.6 Metaheuristic Algorithms 3.1.6.1 Classification of Metaheuristic Algorithms: Nature-Inspired vs. Non-Nature–Inspired 3.1.6.2 Population-Based vs. Single-Point Search (Trajectory) 3.1.7 Data Processing Flow of ACO 3.2 A Case Study on Surgical Treatment in Operation Room 3.3 Case Study on Waste Management System 3.4 Working Process of the System 3.5 Background Knowledge to be Considered for Estimation 3.5.1 Heuristic Function 3.5.2 Functional Approach 3.6 Case Study on Traveling System 3.7 Future Trends and Conclusion References 4 A Hybrid Bat-Genetic Algorithm–Based Novel Optimal Wavelet Filter for Compression of Image Data 4.1 Introduction 4.2 Review of Related Works 4.3 Existing Technique for Secure Image Transmission 4.4 Proposed Design of Optimal Wavelet Coefficients for Image Compression 4.4.1 Optimized Transformation Module 4.4.1.1 DWT Analysis and Synthesis Filter Bank 4.4.2 Compression and Encryption Module 4.4.2.1 SPIHT 4.4.2.2 Chaos-Based Encryption 4.5 Results and Discussion 4.5.1 Experimental Setup and Evaluation Metrics 4.5.2 Simulation Results 4.5.2.1 Performance Analysis of the Novel Filter KARELET 4.5.3 Result Analysis Proposed System 4.6 Conclusion References 5 A Swarm Robot for Harvesting a Paddy Field 5.1 Introduction 5.1.1 Working Principle of Particle Swarm Optimization 5.1.2 First Case Study on Birds Fly 5.1.3 Operational Moves on Birds Dataset 5.1.4 Working Process of the Proposed Model 5.2 Second Case Study on Recommendation Systems 5.3 Third Case Study on Weight Lifting Robot 5.4 Background Knowledge of Harvesting Process 5.4.1 Data Flow of PSO Process 5.4.2 Working Flow of Harvesting Process 5.4.3 The First Phase of Harvesting Process 5.4.4 Separation Process in Harvesting 5.4.5 Cleaning Process in the Field 5.5 Future Trend and Conclusion References 6 Firefly Algorithm 6.1 Introduction 6.2 Firefly Algorithm 6.2.1 Firefly Behavior 6.2.2 Standard Firefly Algorithm 6.2.3 Variations in Light Intensity and Attractiveness 6.2.4 Distance and Movement 6.2.5 Implementation of FA 6.2.6 Special Cases of Firefly Algorithm 6.2.7 Variants of FA 6.3 Applications of Firefly Algorithm 6.3.1 Job Shop Scheduling 6.3.2 Image Segmentation 6.3.3 Stroke Patient Rehabilitation 6.3.4 Economic Emission Load Dispatch 6.3.5 Structural Design 6.4 Why Firefly Algorithm is Efficient 6.4.1 FA is Not PSO 6.5 Discussion and Conclusion References 7 The Comprehensive Review for Biobased FPA Algorithm 7.1 Introduction 7.1.1 Stochastic Optimization 7.1.2 Robust Optimization 7.1.3 Dynamic Optimization 7.1.4 Alogrithm 7.1.5 Swarm Intelligence 7.2 Related Work to FPA 7.2.1 Flower Pollination Algorithm 7.2.2 Versions of FPA 7.2.3 Methods and Description 7.3 Limitations 7.4 Future Research 7.5 Conclusion References 8 Nature-Inspired Computation in Data Mining 8.1 Introduction 8.2 Classification of NIC 8.2.1 Swarm Intelligence for Data Mining 8.2.1.1 Swarm Intelligence Algorithm 8.2.1.2 Applications of Swarm Intelligence in Data Mining 8.2.1.3 Swarm-Based Intelligence Techniques 8.3 Evolutionary Computation 8.3.1 Genetic Algorithms 8.3.1.1 Applications of Genetic Algorithms in Data Mining 8.3.2 Evolutionary Programming 8.3.2.1 Applications of Evolutionary Programming in Data Mining 8.3.3 Genetic Programming 8.3.3.1 Applications of Genetic Programming in Data Mining 8.3.4 Evolution Strategies 8.3.4.1 Applications of Evolution Strategies in Data Mining 8.3.5 Differential Evolutions 8.3.5.1 Applications of Differential Evolution in Data Mining 8.4 Biological Neural Network 8.4.1 Artificial Neural Computation 8.4.1.1 Neural Network Models 8.4.1.2 Challenges of Artificial Neural Network in Data Mining 8.4.1.3 Applications of Artificial Neural Network in Data Mining 8.5 Molecular Biology 8.5.1 Membrane Computing 8.5.2 Algorithm Basis 8.5.3 Challenges of Membrane Computing in Data Mining 8.5.4 Applications of Membrane Computing in Data Mining 8.6 Immune System 8.6.1 Artificial Immune System 8.6.1.1 Artificial Immune System Algorithm (Enhanced) 8.6.1.2 Challenges of Artificial Immune System in Data Mining 8.6.1.3 Applications of Artificial Immune System in Data Mining 8.7 Applications of NIC in Data Mining 8.8 Conclusion References 9 Optimization Techniques for Removing Noise in Digital Medical Images 9.1 Introduction 9.2 Medical Imaging Techniques 9.2.1 X-Ray Images 9.2.2 Computer Tomography Imaging 9.2.3 Magnetic Resonance Images 9.2.4 Positron Emission Tomography 9.2.5 Ultrasound Imaging Techniques 9.3 Image Denoising 9.3.1 Impulse Noise and Speckle Noise Denoising 9.4 Optimization in Image Denoising 9.4.1 Particle Swarm Optimization 9.4.2 Adaptive Center Pixel Weighted Median Exponential Filter 9.4.3 Hybrid Wiener Filter 9.4.4 Removal of Noise in Medical Images Using Particle Swarm Optimization 9.4.4.1 Curvelet Transform 9.4.4.2 PSO With Curvelet Transform and Hybrid Wiener Filter 9.4.5 DFOA-Based Curvelet Transform and Hybrid Wiener Filter 9.4.5.1 Dragon Fly Optimization Algorithm 9.4.5.2 DFOA-Based HWACWMF 9.5 Results and Discussions 9.5.1 Simulation Results 9.5.2 Performance Metric Analysis 9.5.3 Summary 9.6 Conclusion and Future Scope References 10 Performance Analysis of Nature-Inspired Algorithms in Breast Cancer Diagnosis 10.1 Introduction 10.1.1 NIC Algorithms 10.2 Related Works 10.3 Dataset: Wisconsin Breast Cancer Dataset (WBCD) 10.4 Ten-Fold Cross-Validation 10.4.1 Training Data 10.4.2 Validation Data 10.4.3 Test Data 10.4.4 Pseudocode 10.4.5 Advantages of K-Fold or 10-Fold Cross-Validation 10.5 Naive Bayesian Classifier 10.5.1 Pseudocode of Naive Bayesian Classifier 10.5.2 Advantages of Naive Bayesian Classifier 10.6 K-Means Clustering 10.7 Support Vector Machine (SVM) 10.8 Swarm Intelligence Algorithms 10.8.1 Particle Swarm Optimization 10.8.2 Firefly Algorithm 10.8.3 Ant Colony Optimization 10.9 Evaluation Metrics 10.10 Results and Discussion 10.11 Conclusion References 11 Applications of Cuckoo Search Algorithm for Optimization Problems 11.1 Introduction 11.2 Related Works 11.3 Cuckoo Search Algorithm 11.3.1 Biological Description 11.3.2 Algorithm 11.4 Applications of Cuckoo Search 11.4.1 In Engineering 11.4.1.1 Applications in Mechanical Engineering 11.4.2 In Structural Optimization 11.4.2.1 Test Problems 11.4.3 Application CSA in Electrical Engineering, Power, and Energy 11.4.3.1 Embedded System 11.4.3.2 PCB 11.4.3.3 Power and Energy 11.4.4 Applications of CS in Field of Machine Learning and Computation 11.4.5 Applications of CS in Image Processing 11.4.6 Application of CSA in Data Processing 11.4.7 Applications of CSA in Computation and Neural Network 11.4.8 Application in Wireless Sensor Network 11.5 Conclusion and Future Work References 12 Mapping of Real-World Problems to Nature-Inspired Algorithm Using Goal-Based Classification and TRIZ 12.1 Introduction and Background 12.2 Motivations Behind NIA Exploration 12.2.1 Prevailing Issues With Technology 12.2.1.1 Data Dependencies 12.2.1.2 Demand for Higher Software Complexity 12.2.1.3 NP-Hard Problems 12.2.1.4 Energy Consumption 12.2.2 Nature-Inspired Algorithm at a Rescue 12.3 Novel TRIZ + NIA Approach 12.3.1 Traditional Classification 12.3.1.1 Swarm Intelligence 12.3.1.2 Evolutionary Algorithm 12.3.1.3 Bio-Inspired Algorithms 12.3.1.4 Physics-Based Algorithm 12.3.1.5 Other Nature-Inspired Algorithms 12.3.2 Limitation of Traditional Classification 12.3.3 Combined Approach NIA + TRIZ 12.3.3.1 TRIZ 12.3.3.2 NIA + TRIZ 12.3.4 End Goal–Based Classification 12.4 Examples to Support the TRIZ + NIA Approach 12.4.1 Fruit Optimization Algorithm to Predict Monthly Electricity Consumption 12.4.2 Bat Algorithm to Model River Dissolved Oxygen Concentration 12.4.3 Genetic Algorithm to Tune the Structure and Parameters of a Neural Network 12.5 A Solution of NP-H Using NIA 12.5.1 The 0-1 Knapsack Problem 12.5.2 Traveling Salesman Problem 12.6 Conclusion References Index Also of Interest Check out these published and forthcoming related titles from Scrivener Publishing EULA