دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: داروشناسی ویرایش: نویسندگان: Harish Dureja, Jon Adams Raimar Löbenberg, Terezinha de Jesus Andreoli Pinto, Kamal Dua سری: ISBN (شابک) : 9811976554, 9789811976551 ناشر: Springer سال نشر: 2023 تعداد صفحات: 483 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های دارورسانی مبتنی بر مواد پلیمری طبیعی در بیماری های ریوی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Editors and Contributors 1: Introduction to Lung Disease 1.1 Introduction 1.2 Overview of Lung Disease 1.2.1 Chronic Obstructive Pulmonary Disease 1.2.1.1 Etiology 1.2.1.2 The Genetic Origins 1.2.1.3 MicroRNAs´ Origins 1.2.1.4 Pathophysiology 1.2.1.5 Treatment 1.2.2 Asthma 1.2.2.1 Etiology 1.2.2.2 Epidemiology (Hernandez-Gonzalez et al. 2021; Hoffman 2021) 1.2.2.3 Pathophysiology 1.2.2.4 Treatment 1.2.3 Pneumonia 1.2.3.1 Etiology 1.2.3.2 Epidemiology 1.2.3.3 Pathophysiology 1.2.3.4 Treatment 1.2.4 Tuberculosis 1.2.4.1 Etiology 1.2.4.2 Epidemiology 1.2.4.3 Pathophysiology 1.2.4.4 Treatment 1.2.5 Cystic Fibrosis 1.2.5.1 Etiology 1.2.5.2 Epidemiology 1.2.5.3 Pathophysiology 1.2.5.4 Treatment 1.2.6 Lung Cancer 1.2.6.1 Etiology 1.2.6.2 Epidemiology 1.2.6.3 Pathophysiology 1.2.6.4 Treatment 1.3 Conclusion References 2: Natural Polymers for Drugs Delivery 2.1 Introduction 2.2 Polysaccharide-Based Drug Delivery Systems 2.2.1 Alginate-Based Drug Delivery Systems 2.2.2 Cyclodextrin-Based Drug Delivery Systems 2.2.3 Chitosan-Based Drug Delivery Systems 2.2.4 Dextran-Based Drug Delivery Systems 2.2.5 Agarose-Based Drug Delivery Systems 2.2.6 Hyaluronic Acid-Based Drug Delivery Systems 2.2.7 Starch-Based Drug Delivery Systems 2.2.8 Cellulose-Based Drug Delivery Systems 2.3 Protein-Based Drug Delivery Systems 2.3.1 Collagen-Based DDS 2.3.2 Albumin and Gelatin-Based Drug Delivery Systems 2.4 Summary and Conclusion References 3: Drug Delivery Systems Based on Various Natural Polymers for Lung Diseases 3.1 Introduction 3.2 Merits of Natural Polymers 3.3 Demerits of Natural Polymers 3.4 Natural Polymer-Based Drug Delivery Systems for Lung Disease 3.4.1 Polymeric Nanoparticles 3.4.2 Nanocrystals 3.4.3 Polymeric Microparticles 3.4.4 Pulsatile Microcapsules 3.4.5 Liposomes 3.4.6 Microspheres 3.4.7 Nanospheres 3.4.8 Polymeric Solutions 3.4.9 Nanofibers 3.5 Devices for Delivery of Drugs 3.5.1 Dry Powder Inhalers 3.5.2 Nebulizers 3.5.3 Metered Dose Inhalers 3.6 Advantages of Natural Polymers in Developing Drug Delivery System for Lung Diseases 3.7 Conclusion References Part I: Plant-Derived Natural Polymers Employed in Respiratory Diseases 4: Cellulose-Based Drug Delivery Systems in Lung Disorders 4.1 Introduction 4.2 Characteristics of Cellulose 4.3 Global Production of Cellulose 4.4 Application of Cellulose and its Derivatives in Lung Diseases 4.4.1 Cellulose and Lung Cancer 4.4.2 Cellulose and Lung Infections 4.4.3 Cellulose and Influenza 4.4.4 Cellulose and Tuberculosis 4.4.5 Cellulose and Lung Tissue Engineering 4.4.6 Cellulose and Chronic Obstructive Pulmonary Disease 4.4.7 Cellulose and Asthma 4.4.8 Cellulose-Based Aerogels in Pulmonary Disease 4.5 Conclusion References 5: Pectin-Derived Drug Delivery Systems in Respiratory Diseases 5.1 Introduction 5.1.1 Preparation of Pectin 5.2 Applications of Pectin in Respiratory Diseases 5.2.1 Treating Lung Cancer 5.2.2 Treating Acute Exacerbations of Lungs 5.2.3 Inhibition and Prevention of Viral Infection 5.2.4 Treatment of Chronic Rhino-Sinusitis 5.2.5 A Sealant in Pleural Injury 5.2.6 As Efficient Microbial Agent 5.2.7 Nose-to-Brain Targeting 5.2.8 In Treating the Pain Episodes 5.2.9 Treating Asthma and Pulmonary Diseases and Respiratory Symptoms 5.2.10 In Preventing Tuberculosis in Macrophage Culture 5.2.11 Miscellaneous 5.3 Conclusion References 6: Starch-Based Drug Delivery Systems in Lung Disorders 6.1 Introduction 6.2 Sources and Characteristics 6.3 Overview of Starch Market 6.4 Advantages 6.5 Application of Starch in Lung Disease 6.5.1 Starch and Asthma 6.5.2 Starch and Pulmonary Arterial Hypertension 6.5.3 Starch and Lung Cancer 6.5.4 Starch and Tuberculosis 6.6 Conclusion References 7: Cyclodextrin-Derived Drug Delivery Systems in Respiratory Diseases 7.1 Introduction 7.2 Sources and Physicochemical Properties of Different CD Derivatives 7.2.1 Sources 7.2.1.1 CDs from Natural Sources 7.2.1.2 CD Derivatives 7.2.2 Physicochemical Properties of Different CDs Derivatives 7.2.2.1 Alpha-Cyclodextrin (α-CD) 7.2.2.2 Beta-Cyclodextrin (beta-CD) 7.2.2.3 Gama-Cyclodextrin (gamma-CD) 7.3 Application of Various Cyclodextrin-Based Drug Delivery Systems for Respiratory Diseases 7.3.1 Chronic Obstructive Pulmonary Disease 7.3.2 Asthma 7.3.3 Bacterial Pneumonia 7.3.4 Pulmonary Fibrosis 7.3.5 Lung Cancer 7.3.6 Severe Acute Respiratory Syndrome Coronavirus 2 7.3.7 Miscellaneous 7.4 Clinical Pertinency 7.5 Conclusion References 8: Gum-Based Drug Delivery Systems 8.1 Introduction 8.2 Merits 8.3 Demerits 8.4 Classification of Gums 8.5 Characterization of Gums 8.6 Miscellaneous Pharmaceutical Applications of Gums 8.6.1 Tablet Formulations 8.6.2 Gums in Microencapsulation 8.6.3 Gums as Coating Agent 8.6.4 Gums as Gelling Agent 8.6.5 Gums as Emulsifying and Suspending Agent 8.6.6 Gums in Sustained Drug Delivery 8.6.7 Natural Gums in Intelligent Drug Delivery 8.6.8 Utilization of Gums as Film Formers 8.6.9 Normal Polymers for Theranostics 8.6.10 Normal Polymers for BioMEMS 8.7 Gums Used in Respiratory Diseases 8.7.1 Tamarind Gum 8.7.1.1 Chemical Composition 8.7.1.2 Physical Properties 8.7.1.3 Pharmaceutical Applications of Tamarind Seed Polysaccharide Respiratory Diseases In Sustained Drug Delivery 8.7.2 Almond Gum 8.7.2.1 Chemical Composition 8.7.2.2 Pharmaceutical Applications 8.7.3 Cashew Gum 8.7.3.1 Chemical Composition 8.7.3.2 Pharmaceutical Applications Other Applications 8.7.4 Albizia Gum 8.7.4.1 Chemical Composition 8.7.4.2 Pharmaceutical Applications 8.7.5 Abelmoschus Gum 8.7.5.1 Chemical Composition 8.7.5.2 Pharmaceutical Applications 8.7.6 Ferula Gum 8.7.6.1 Chemical Composition 8.7.6.2 Pharmaceutical Applications 8.7.7 Cordia Mucilage 8.7.7.1 Chemical Composition 8.7.7.2 Pharmaceutical Applications 8.8 Physical Appearance and Chemical Structures of the Gums 8.9 Conclusion References 9: Emergence of Glucomannan and Xyloglucan for Respirable Delivery 9.1 Introduction 9.2 Glucomannan 9.2.1 Konjac Glucomannan 9.2.1.1 Physicochemical Properties 9.2.1.2 Extraction 9.2.1.3 Derivatization 9.2.1.4 Drug Delivery to Respiratory System 9.2.2 Bletilla Striata GM 9.2.2.1 Physicochemical Properties 9.2.2.2 Extraction 9.2.2.3 Derivatization 9.2.2.4 Drug Delivery to Respiratory System 9.3 Xyloglucan 9.3.1 Physicochemical Properties 9.3.2 Extraction 9.3.3 Derivatization 9.3.4 Drug Delivery to Respiratory System 9.4 Conclusion References 10: Arabinogalactan-Based Drug Delivery Systems 10.1 Introduction 10.1.1 Physical Characteristics 10.1.2 Chemical Nature 10.1.3 Pharmacokinetics 10.2 Pharmaceutical/Medical Applications of Arabinogalactan 10.3 Arabinogalactan in Pulmonary Drug Delivery 10.3.1 Arabinogalactan as a Complexing Agent 10.3.2 Arabinogalactan as an Immune-Modulating Agent 10.3.3 Arabinogalactan as Chemopreventive Agent 10.3.4 Arabinogalactan as Mucoadhesive Agent 10.3.5 Arabinogalactan as a Functional Excipient 10.4 Conclusions References Part II: Animal-Derived Natural Polymers Employed in Respiratory Diseases 11: Chitosan-Based Drug Delivery Systems for Respiratory Diseases 11.1 Introduction 11.1.1 Modifications of Chitosan 11.2 Chitosan in Novel Drug Delivery Systems 11.2.1 Chitosan Nanoparticles (CNPs) 11.2.2 Chitosan Microspheres 11.2.3 Chitosan Microcapsules 11.2.4 Chitosan-Coated Liposomes 11.2.5 Chitosan Hydrogels 11.3 Chitosan-Based Vaccine Delivery 11.4 Limitations of Chitosan 11.5 Conclusion References 12: Albumin for Application in Drug Delivery System for Lung Diseases 12.1 Introduction 12.1.1 Treatment of Lung Diseases 12.1.2 Challenges in Lung Delivery 12.2 Novel Carriers for Lung Delivery 12.2.1 Albumin Drug Delivery Systems in the Treatment of COPD 12.2.2 Albumin as a Drug Delivery System in the Treatment of Lung Cancer 12.2.3 Applications of Albumin in the Treatment of Pulmonary Tuberculosis 12.2.4 Applications of Albumin in the Treatment of Asthma 12.3 Conclusion References 13: Gelatin in Drug Delivery System for Treatment of Lung Diseases 13.1 Introduction 13.2 Advantages of Gelatin as a Drug Delivery Carrier 13.3 Modification of Gelatin 13.3.1 Stealth Delivery 13.3.2 Targeted Drug Delivery 13.4 Mechanism for Drug Release 13.5 Applications of Gelatin as Drug Delivery Carrier in Lung Disorders 13.6 Conclusion 13.7 Acknowledgments References 14: Hyaluronan and Chondroitin Sulphate-Based Drug Delivery Systems 14.1 Introduction 14.2 Advantages of CS and HA as a Drug Delivery Carrier 14.3 Clinical Need to Develop a Safe and Effective Delivery System for Lung Disorders 14.4 Physiological Role of CS and HA 14.5 Applications of HA and CS as Drug Delivery Carrier in Lung Targeting 14.6 Products with HA and CS as Active Components 14.7 Conclusion and Future Prospects References 15: Insulin-Based Drug Delivery Systems 15.1 Introduction 15.2 Types and Analogues of Insulin Polymer 15.2.1 Various Types of Insulins Derived from Animals 15.2.2 Insulin Analogues 15.2.2.1 Fast-Acting Insulin Analogues 15.2.2.2 Delayed-Action Insulin Analogues 15.2.2.3 Porcine and Bovine Insulins 15.3 Novel Drug Delivery Systems Targeting Pulmonary Diseases 15.3.1 Mechanisms of Pulmonary Drug Administration 15.3.2 Strategic Criteria for Particle-Based Pulmonary Delivery Systems 15.3.3 General Pulmonary Drug Delivery Devices 15.3.4 Particle-Based Pulmonary Systems 15.4 Polymeric Nanomaterials: Characteristics and Uses in Insulin Delivery 15.4.1 Natural Polymers 15.4.2 Synthetic Polymers 15.5 Role of Insulin in Respiratory Mechanisms 15.5.1 Insulin and Lung 15.5.2 Insulin and Airway Smooth Muscle 15.5.3 Insulin and PI3K/Akt Signaling 15.5.4 Insulin, Wnt/beta-Catenin Signaling, and Airway Remodeling 15.6 Nano Platforms and Their Properties for Nano-Insulin Delivery 15.7 Future Perspective for Insulin Nano Therapeutics 15.8 Conclusion References Part III: Microorganisms Derived Natural Polymers Employed in Respiratory Diseases 16: Xanthan Gum-Based Drug Delivery Systems for Respiratory Diseases 16.1 Introduction 16.2 Xanthan Gum 16.2.1 Rationale for Selection of Xanthan Gum 16.2.2 Modified Xanthan Gum Materials 16.2.2.1 Modification with Carboxymethylation 16.2.2.2 Esterified Xanthan Gum 16.2.2.3 Acetylated Xanthan Gum 16.2.2.4 Oxidized Xanthan Gum 16.2.2.5 Physically Modified Xanthan Gum 16.3 Xanthan Gum-Based Pulmonary Drug Delivery Systems 16.3.1 Liposomes 16.3.2 Hydrogels 16.3.3 Matrix System 16.3.4 Nanoparticles 16.3.5 Microspheres 16.4 Clinical Trials 16.5 Xanthan Gum Functionalized Nanoparticles for Gene Therapy in Pulmonary Vascular Diseases 16.6 Conclusion References 17: Dextran for Application in DDS for Lung Diseases 17.1 Introduction 17.1.1 Dextran 17.2 Dextran: The Physicochemical Alterations 17.2.1 Esters of Dextran 17.2.2 Ethers of Dextran 17.2.3 Dialdehyde Derivative of Dextran 17.2.4 Acetylated Derivative of Dextran 17.3 Dextran and Its Potential Derivatives for Drug Delivery Systems 17.3.1 Critical Attributes of Dextran 17.4 Multifaceted Role of Dextran in Drug Delivery System 17.4.1 Self-assembly of Dextran as Micelles 17.4.2 Dextran as Stabilizer in Nano-Emulsions 17.4.3 Coating with Dextran by Coprecipitation 17.4.4 Dextran as Cross-linking Agents 17.4.5 Dextran as Co-excipient in Spray-Dried Formulations 17.5 Dextrans in Drug Delivery: Perspectives and Prospects 17.6 Dextran-Based Novel Drug Delivery Systems in Respiratory Disorders: The Prior Art 17.6.1 Nanoparticulate Carriers 17.6.2 Microparticulate Carriers 17.6.3 Instillation Delivery System 17.6.4 Other Delivery Systems 17.7 Other Therapeutic Applications of Dextran 17.8 Conclusion References 18: Pullulan in Drug Delivery System for the Treatment of Lung Disorders 18.1 Introduction 18.1.1 Pullulan Biosynthesis 18.1.2 Strains Producing the Pullulan 18.1.3 Pullulan Derivatives 18.2 Beneficial Attributes of Pullulan 18.3 Pullulan-Based Drug Delivery System for the Treatment of Lung´s Disease 18.3.1 Pullulan-Based Nanogel for the Delivery of Drugs for Respiratory Ailments 18.3.2 Pullulan-Based Nanoparticles for the Treatment of the Respiratory Disease 18.3.3 Pullulan-Based Microparticles for the Treatment of Various Respiratory Disorders 18.3.4 Pullulan-Based Liposomes for the Treatment of Various Respiratory Diseases 18.4 Other Biomedical Applications of Pullulan 18.4.1 Gene Delivery at Specific Place in Human Body 18.4.2 Tissue Engineering 18.4.3 Film-Forming Agents 18.4.4 Molecular Chaperons 18.4.5 Plasma Expander 18.4.6 Medical Imaging 18.5 Limitations of Pullulan-Based DDS 18.6 Conclusion References Part IV: Algae Derived Natural Polymers Employed in Respiratory Diseases 19: Alginate-Based Drug Delivery Systems for Respiratory Disease 19.1 Introduction 19.1.1 General Properties 19.1.2 Gelling Properties 19.1.3 Gel Formation 19.1.4 Gel Power 19.1.5 Dissolution 19.1.6 Biocompatibility 19.1.7 Structure and Characterization 19.1.8 Derivatives of Alginates 19.2 Application of Alginate and Its Derivatives in Lung Diseases 19.2.1 Alginate and Lung Cancer 19.2.2 Alginate and Lung Infection 19.2.3 Alginate and COPD 19.2.4 Alginate and Tuberculosis 19.3 Alginate-Based Drug Delivery Systems for Antifungal Drugs 19.4 Conclusion References 20: Carrageenan-Based Drug Delivery Systems for Respiratory Disease 20.1 Introduction 20.2 Classification of Carrageenan Polymers 20.2.1 Kappa (kappa)-Carrageenan 20.2.2 Iota (iota)-Carrageenan 20.2.3 Lambda (lambda)-Carrageenan 20.2.4 Mu (mu)-Carrageenan, Nu(nu)-Carrageenan, and Theta (theta)-Carrageenan 20.3 Carrageenan Polymer in Designing Diverse Drug Delivery Systems for the Management of Respiratory Disease 20.4 Applications of Carrageenan and Its Derivatives for the Treatment of Various Respiration/Lung Diseases 20.4.1 Role of CG in Respiratory Disorders Caused Due to Influenza Virus 20.4.2 Role of CG in Respiratory Disorders Caused Due to Bacteria 20.4.3 Role of CG in Respiratory Disorders Caused Due to SARS-Cov Virus 20.4.4 Role of CG in Respiratory Disorders Caused Due to HRV 20.4.5 Role of CG in the Treatment of Tuberculosis 20.5 Safety and Toxicology of Carrageenan 20.6 Conclusions References 21: Agar-Based Drug Delivery Systems for Respiratory Disease 21.1 Introduction of Agar Polymers in Drug Delivery Systems 21.2 Classification of Agar Polymers 21.3 Physiological Barriers to Agar-Based Drug Delivery Systems 21.4 Application of Agar Polymer in Diverse Dosage Forms Which Can Be Used for Respiratory and Lung Disorders 21.4.1 Embedding of Bacteria 21.4.2 Agar-Based Microparticles 21.4.3 Agar as a Polymer for the Development of Films 21.4.4 Agar in a Form of Aerosols 21.4.5 Agar-Based Nanoparticles 21.4.6 Agar Used in the Formulation of Gels 21.4.7 Agar in the Preparation of Tablets 21.4.8 Use of Agarose as a Potential Polymer 21.5 Conclusions References 22: Clinical Trials and Regulatory Issues of Natural Polymers Employed in Respiratory Disease 22.1 Introduction 22.2 Preclinical Model Study 22.3 Regulatory Aspects of Natural Polymers in Pharmaceuticals 22.4 Conclusion References 23: Elucidating the Molecular Mechanisms of Toxicity of Natural Polymer-Based Drug Delivery Systems Used in Various Pulmonary ... 23.1 Introduction 23.1.1 Arginine 23.1.2 Chitosan 23.1.3 Dextran 23.1.4 Alginate 23.1.5 Starch 23.1.6 Albumin 23.1.7 Collagen 23.1.8 Gelatin 23.1.9 Zein 23.2 Pulmonary Toxicity of Natural Polymer-Based Drug Delivery Systems 23.2.1 Oxidative Stress 23.2.2 Inflammation 23.2.3 Genotoxicity 23.2.4 Other Toxicities of Natural Polymers (Neurotoxicity, Nephrotoxicity, Hepatotoxicity, and Cardiotoxicity) 23.2.5 Neurotoxicity 23.2.6 Hemocompatibility 23.3 Conclusion References 24: Compelling Impacts of Natural Polymer-Centered Drug Delivery Systems as Prophylactic and Therapeutic Approaches in Various... 24.1 Introduction 24.2 Prevalent Pulmonary Disorders and the Current Therapeutic Approaches 24.2.1 Pulmonary Hypertension 24.2.2 Cystic Fibrosis 24.2.3 Asthma 24.2.4 Chronic Obstructive Pulmonary Disorder (COPD) 24.2.5 Emphysema 24.2.6 Chronic Bronchitis 24.2.7 Lung Cancer 24.2.8 COVID-19 24.3 Natural Polymer-Centered Drug Delivery Systems 24.3.1 Chitosan 24.3.2 Alginates (Sodium Alginates) 24.3.3 Albumin 24.3.4 Hydroxyapatite 24.3.5 Hyaluronic Acid 24.4 Advantages of Using a Natural Polymer-Centered Drug Delivery System for Lung Pathologies 24.5 Conclusion References 25: Future Prospects of Natural Polymer-Based Drug Delivery Systems in Combating Lung Diseases 25.1 Introduction 25.2 Natural Polymer-Based Drug Delivery for Lung Diseases 25.2.1 Polysaccharide NPs 25.2.1.1 Chitosan NPs 25.2.1.2 Alginate NPs 25.2.2 Gelatin NPs 25.3 Advantages and Disadvantages of Natural Polymer-Based Drug Delivery Systems in Lung Diseases 25.4 Future Aspect of Nature Polymer-Based Drug Delivery Systems in Lung Diseases 25.5 Conclusion References