ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases

دانلود کتاب سیستم های دارورسانی مبتنی بر مواد پلیمری طبیعی در بیماری های ریوی

Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases

مشخصات کتاب

Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases

دسته بندی: داروشناسی
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9811976554, 9789811976551 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 483 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 38,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های دارورسانی مبتنی بر مواد پلیمری طبیعی در بیماری های ریوی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Editors and Contributors
1: Introduction to Lung Disease
	1.1 Introduction
	1.2 Overview of Lung Disease
		1.2.1 Chronic Obstructive Pulmonary Disease
			1.2.1.1 Etiology
			1.2.1.2 The Genetic Origins
			1.2.1.3 MicroRNAs´ Origins
			1.2.1.4 Pathophysiology
			1.2.1.5 Treatment
		1.2.2 Asthma
			1.2.2.1 Etiology
			1.2.2.2 Epidemiology (Hernandez-Gonzalez et al. 2021; Hoffman 2021)
			1.2.2.3 Pathophysiology
			1.2.2.4 Treatment
		1.2.3 Pneumonia
			1.2.3.1 Etiology
			1.2.3.2 Epidemiology
			1.2.3.3 Pathophysiology
			1.2.3.4 Treatment
		1.2.4 Tuberculosis
			1.2.4.1 Etiology
			1.2.4.2 Epidemiology
			1.2.4.3 Pathophysiology
			1.2.4.4 Treatment
		1.2.5 Cystic Fibrosis
			1.2.5.1 Etiology
			1.2.5.2 Epidemiology
			1.2.5.3 Pathophysiology
			1.2.5.4 Treatment
		1.2.6 Lung Cancer
			1.2.6.1 Etiology
			1.2.6.2 Epidemiology
			1.2.6.3 Pathophysiology
			1.2.6.4 Treatment
	1.3 Conclusion
	References
2: Natural Polymers for Drugs Delivery
	2.1 Introduction
	2.2 Polysaccharide-Based Drug Delivery Systems
		2.2.1 Alginate-Based Drug Delivery Systems
		2.2.2 Cyclodextrin-Based Drug Delivery Systems
		2.2.3 Chitosan-Based Drug Delivery Systems
		2.2.4 Dextran-Based Drug Delivery Systems
		2.2.5 Agarose-Based Drug Delivery Systems
		2.2.6 Hyaluronic Acid-Based Drug Delivery Systems
		2.2.7 Starch-Based Drug Delivery Systems
		2.2.8 Cellulose-Based Drug Delivery Systems
	2.3 Protein-Based Drug Delivery Systems
		2.3.1 Collagen-Based DDS
		2.3.2 Albumin and Gelatin-Based Drug Delivery Systems
	2.4 Summary and Conclusion
	References
3: Drug Delivery Systems Based on Various Natural Polymers for Lung Diseases
	3.1 Introduction
	3.2 Merits of Natural Polymers
	3.3 Demerits of Natural Polymers
	3.4 Natural Polymer-Based Drug Delivery Systems for Lung Disease
		3.4.1 Polymeric Nanoparticles
		3.4.2 Nanocrystals
		3.4.3 Polymeric Microparticles
		3.4.4 Pulsatile Microcapsules
		3.4.5 Liposomes
		3.4.6 Microspheres
		3.4.7 Nanospheres
		3.4.8 Polymeric Solutions
		3.4.9 Nanofibers
	3.5 Devices for Delivery of Drugs
		3.5.1 Dry Powder Inhalers
		3.5.2 Nebulizers
		3.5.3 Metered Dose Inhalers
	3.6 Advantages of Natural Polymers in Developing Drug Delivery System for Lung Diseases
	3.7 Conclusion
	References
Part I: Plant-Derived Natural Polymers Employed in Respiratory Diseases
	4: Cellulose-Based Drug Delivery Systems in Lung Disorders
		4.1 Introduction
		4.2 Characteristics of Cellulose
		4.3 Global Production of Cellulose
		4.4 Application of Cellulose and its Derivatives in Lung Diseases
			4.4.1 Cellulose and Lung Cancer
			4.4.2 Cellulose and Lung Infections
			4.4.3 Cellulose and Influenza
			4.4.4 Cellulose and Tuberculosis
			4.4.5 Cellulose and Lung Tissue Engineering
			4.4.6 Cellulose and Chronic Obstructive Pulmonary Disease
			4.4.7 Cellulose and Asthma
			4.4.8 Cellulose-Based Aerogels in Pulmonary Disease
		4.5 Conclusion
		References
	5: Pectin-Derived Drug Delivery Systems in Respiratory Diseases
		5.1 Introduction
			5.1.1 Preparation of Pectin
		5.2 Applications of Pectin in Respiratory Diseases
			5.2.1 Treating Lung Cancer
			5.2.2 Treating Acute Exacerbations of Lungs
			5.2.3 Inhibition and Prevention of Viral Infection
			5.2.4 Treatment of Chronic Rhino-Sinusitis
			5.2.5 A Sealant in Pleural Injury
			5.2.6 As Efficient Microbial Agent
			5.2.7 Nose-to-Brain Targeting
			5.2.8 In Treating the Pain Episodes
			5.2.9 Treating Asthma and Pulmonary Diseases and Respiratory Symptoms
			5.2.10 In Preventing Tuberculosis in Macrophage Culture
			5.2.11 Miscellaneous
		5.3 Conclusion
		References
	6: Starch-Based Drug Delivery Systems in Lung Disorders
		6.1 Introduction
		6.2 Sources and Characteristics
		6.3 Overview of Starch Market
		6.4 Advantages
		6.5 Application of Starch in Lung Disease
			6.5.1 Starch and Asthma
			6.5.2 Starch and Pulmonary Arterial Hypertension
			6.5.3 Starch and Lung Cancer
			6.5.4 Starch and Tuberculosis
		6.6 Conclusion
		References
	7: Cyclodextrin-Derived Drug Delivery Systems in Respiratory Diseases
		7.1 Introduction
		7.2 Sources and Physicochemical Properties of Different CD Derivatives
			7.2.1 Sources
				7.2.1.1 CDs from Natural Sources
				7.2.1.2 CD Derivatives
			7.2.2 Physicochemical Properties of Different CDs Derivatives
				7.2.2.1 Alpha-Cyclodextrin (α-CD)
				7.2.2.2 Beta-Cyclodextrin (beta-CD)
				7.2.2.3 Gama-Cyclodextrin (gamma-CD)
		7.3 Application of Various Cyclodextrin-Based Drug Delivery Systems for Respiratory Diseases
			7.3.1 Chronic Obstructive Pulmonary Disease
			7.3.2 Asthma
			7.3.3 Bacterial Pneumonia
			7.3.4 Pulmonary Fibrosis
			7.3.5 Lung Cancer
			7.3.6 Severe Acute Respiratory Syndrome Coronavirus 2
			7.3.7 Miscellaneous
		7.4 Clinical Pertinency
		7.5 Conclusion
		References
	8: Gum-Based Drug Delivery Systems
		8.1 Introduction
		8.2 Merits
		8.3 Demerits
		8.4 Classification of Gums
		8.5 Characterization of Gums
		8.6 Miscellaneous Pharmaceutical Applications of Gums
			8.6.1 Tablet Formulations
			8.6.2 Gums in Microencapsulation
			8.6.3 Gums as Coating Agent
			8.6.4 Gums as Gelling Agent
			8.6.5 Gums as Emulsifying and Suspending Agent
			8.6.6 Gums in Sustained Drug Delivery
			8.6.7 Natural Gums in Intelligent Drug Delivery
			8.6.8 Utilization of Gums as Film Formers
			8.6.9 Normal Polymers for Theranostics
			8.6.10 Normal Polymers for BioMEMS
		8.7 Gums Used in Respiratory Diseases
			8.7.1 Tamarind Gum
				8.7.1.1 Chemical Composition
				8.7.1.2 Physical Properties
				8.7.1.3 Pharmaceutical Applications of Tamarind Seed Polysaccharide
					Respiratory Diseases
					In Sustained Drug Delivery
			8.7.2 Almond Gum
				8.7.2.1 Chemical Composition
				8.7.2.2 Pharmaceutical Applications
			8.7.3 Cashew Gum
				8.7.3.1 Chemical Composition
				8.7.3.2 Pharmaceutical Applications
					Other Applications
			8.7.4 Albizia Gum
				8.7.4.1 Chemical Composition
				8.7.4.2 Pharmaceutical Applications
			8.7.5 Abelmoschus Gum
				8.7.5.1 Chemical Composition
				8.7.5.2 Pharmaceutical Applications
			8.7.6 Ferula Gum
				8.7.6.1 Chemical Composition
				8.7.6.2 Pharmaceutical Applications
			8.7.7 Cordia Mucilage
				8.7.7.1 Chemical Composition
				8.7.7.2 Pharmaceutical Applications
		8.8 Physical Appearance and Chemical Structures of the Gums
		8.9 Conclusion
		References
	9: Emergence of Glucomannan and Xyloglucan for Respirable Delivery
		9.1 Introduction
		9.2 Glucomannan
			9.2.1 Konjac Glucomannan
				9.2.1.1 Physicochemical Properties
				9.2.1.2 Extraction
				9.2.1.3 Derivatization
				9.2.1.4 Drug Delivery to Respiratory System
			9.2.2 Bletilla Striata GM
				9.2.2.1 Physicochemical Properties
				9.2.2.2 Extraction
				9.2.2.3 Derivatization
				9.2.2.4 Drug Delivery to Respiratory System
		9.3 Xyloglucan
			9.3.1 Physicochemical Properties
			9.3.2 Extraction
			9.3.3 Derivatization
			9.3.4 Drug Delivery to Respiratory System
		9.4 Conclusion
		References
	10: Arabinogalactan-Based Drug Delivery Systems
		10.1 Introduction
			10.1.1 Physical Characteristics
			10.1.2 Chemical Nature
			10.1.3 Pharmacokinetics
		10.2 Pharmaceutical/Medical Applications of Arabinogalactan
		10.3 Arabinogalactan in Pulmonary Drug Delivery
			10.3.1 Arabinogalactan as a Complexing Agent
			10.3.2 Arabinogalactan as an Immune-Modulating Agent
			10.3.3 Arabinogalactan as Chemopreventive Agent
			10.3.4 Arabinogalactan as Mucoadhesive Agent
			10.3.5 Arabinogalactan as a Functional Excipient
		10.4 Conclusions
		References
Part II: Animal-Derived Natural Polymers Employed in Respiratory Diseases
	11: Chitosan-Based Drug Delivery Systems for Respiratory Diseases
		11.1 Introduction
			11.1.1 Modifications of Chitosan
		11.2 Chitosan in Novel Drug Delivery Systems
			11.2.1 Chitosan Nanoparticles (CNPs)
			11.2.2 Chitosan Microspheres
			11.2.3 Chitosan Microcapsules
			11.2.4 Chitosan-Coated Liposomes
			11.2.5 Chitosan Hydrogels
		11.3 Chitosan-Based Vaccine Delivery
		11.4 Limitations of Chitosan
		11.5 Conclusion
		References
	12: Albumin for Application in Drug Delivery System for Lung Diseases
		12.1 Introduction
			12.1.1 Treatment of Lung Diseases
			12.1.2 Challenges in Lung Delivery
		12.2 Novel Carriers for Lung Delivery
			12.2.1 Albumin Drug Delivery Systems in the Treatment of COPD
			12.2.2 Albumin as a Drug Delivery System in the Treatment of Lung Cancer
			12.2.3 Applications of Albumin in the Treatment of Pulmonary Tuberculosis
			12.2.4 Applications of Albumin in the Treatment of Asthma
		12.3 Conclusion
		References
	13: Gelatin in Drug Delivery System for Treatment of Lung Diseases
		13.1 Introduction
		13.2 Advantages of Gelatin as a Drug Delivery Carrier
		13.3 Modification of Gelatin
			13.3.1 Stealth Delivery
			13.3.2 Targeted Drug Delivery
		13.4 Mechanism for Drug Release
		13.5 Applications of Gelatin as Drug Delivery Carrier in Lung Disorders
		13.6 Conclusion
		13.7 Acknowledgments
		References
	14: Hyaluronan and Chondroitin Sulphate-Based Drug Delivery Systems
		14.1 Introduction
		14.2 Advantages of CS and HA as a Drug Delivery Carrier
		14.3 Clinical Need to Develop a Safe and Effective Delivery System for Lung Disorders
		14.4 Physiological Role of CS and HA
		14.5 Applications of HA and CS as Drug Delivery Carrier in Lung Targeting
		14.6 Products with HA and CS as Active Components
		14.7 Conclusion and Future Prospects
		References
	15: Insulin-Based Drug Delivery Systems
		15.1 Introduction
		15.2 Types and Analogues of Insulin Polymer
			15.2.1 Various Types of Insulins Derived from Animals
			15.2.2 Insulin Analogues
				15.2.2.1 Fast-Acting Insulin Analogues
				15.2.2.2 Delayed-Action Insulin Analogues
				15.2.2.3 Porcine and Bovine Insulins
		15.3 Novel Drug Delivery Systems Targeting Pulmonary Diseases
			15.3.1 Mechanisms of Pulmonary Drug Administration
			15.3.2 Strategic Criteria for Particle-Based Pulmonary Delivery Systems
			15.3.3 General Pulmonary Drug Delivery Devices
			15.3.4 Particle-Based Pulmonary Systems
		15.4 Polymeric Nanomaterials: Characteristics and Uses in Insulin Delivery
			15.4.1 Natural Polymers
			15.4.2 Synthetic Polymers
		15.5 Role of Insulin in Respiratory Mechanisms
			15.5.1 Insulin and Lung
			15.5.2 Insulin and Airway Smooth Muscle
			15.5.3 Insulin and PI3K/Akt Signaling
			15.5.4 Insulin, Wnt/beta-Catenin Signaling, and Airway Remodeling
		15.6 Nano Platforms and Their Properties for Nano-Insulin Delivery
		15.7 Future Perspective for Insulin Nano Therapeutics
		15.8 Conclusion
		References
Part III: Microorganisms Derived Natural Polymers Employed in Respiratory Diseases
	16: Xanthan Gum-Based Drug Delivery Systems for Respiratory Diseases
		16.1 Introduction
		16.2 Xanthan Gum
			16.2.1 Rationale for Selection of Xanthan Gum
			16.2.2 Modified Xanthan Gum Materials
				16.2.2.1 Modification with Carboxymethylation
				16.2.2.2 Esterified Xanthan Gum
				16.2.2.3 Acetylated Xanthan Gum
				16.2.2.4 Oxidized Xanthan Gum
				16.2.2.5 Physically Modified Xanthan Gum
		16.3 Xanthan Gum-Based Pulmonary Drug Delivery Systems
			16.3.1 Liposomes
			16.3.2 Hydrogels
			16.3.3 Matrix System
			16.3.4 Nanoparticles
			16.3.5 Microspheres
		16.4 Clinical Trials
		16.5 Xanthan Gum Functionalized Nanoparticles for Gene Therapy in Pulmonary Vascular Diseases
		16.6 Conclusion
		References
	17: Dextran for Application in DDS for Lung Diseases
		17.1 Introduction
			17.1.1 Dextran
		17.2 Dextran: The Physicochemical Alterations
			17.2.1 Esters of Dextran
			17.2.2 Ethers of Dextran
			17.2.3 Dialdehyde Derivative of Dextran
			17.2.4 Acetylated Derivative of Dextran
		17.3 Dextran and Its Potential Derivatives for Drug Delivery Systems
			17.3.1 Critical Attributes of Dextran
		17.4 Multifaceted Role of Dextran in Drug Delivery System
			17.4.1 Self-assembly of Dextran as Micelles
			17.4.2 Dextran as Stabilizer in Nano-Emulsions
			17.4.3 Coating with Dextran by Coprecipitation
			17.4.4 Dextran as Cross-linking Agents
			17.4.5 Dextran as Co-excipient in Spray-Dried Formulations
		17.5 Dextrans in Drug Delivery: Perspectives and Prospects
		17.6 Dextran-Based Novel Drug Delivery Systems in Respiratory Disorders: The Prior Art
			17.6.1 Nanoparticulate Carriers
			17.6.2 Microparticulate Carriers
			17.6.3 Instillation Delivery System
			17.6.4 Other Delivery Systems
		17.7 Other Therapeutic Applications of Dextran
		17.8 Conclusion
		References
	18: Pullulan in Drug Delivery System for the Treatment of Lung Disorders
		18.1 Introduction
			18.1.1 Pullulan Biosynthesis
			18.1.2 Strains Producing the Pullulan
			18.1.3 Pullulan Derivatives
		18.2 Beneficial Attributes of Pullulan
		18.3 Pullulan-Based Drug Delivery System for the Treatment of Lung´s Disease
			18.3.1 Pullulan-Based Nanogel for the Delivery of Drugs for Respiratory Ailments
			18.3.2 Pullulan-Based Nanoparticles for the Treatment of the Respiratory Disease
			18.3.3 Pullulan-Based Microparticles for the Treatment of Various Respiratory Disorders
			18.3.4 Pullulan-Based Liposomes for the Treatment of Various Respiratory Diseases
		18.4 Other Biomedical Applications of Pullulan
			18.4.1 Gene Delivery at Specific Place in Human Body
			18.4.2 Tissue Engineering
			18.4.3 Film-Forming Agents
			18.4.4 Molecular Chaperons
			18.4.5 Plasma Expander
			18.4.6 Medical Imaging
		18.5 Limitations of Pullulan-Based DDS
		18.6 Conclusion
		References
Part IV: Algae Derived Natural Polymers Employed in Respiratory Diseases
	19: Alginate-Based Drug Delivery Systems for Respiratory Disease
		19.1 Introduction
			19.1.1 General Properties
			19.1.2 Gelling Properties
			19.1.3 Gel Formation
			19.1.4 Gel Power
			19.1.5 Dissolution
			19.1.6 Biocompatibility
			19.1.7 Structure and Characterization
			19.1.8 Derivatives of Alginates
		19.2 Application of Alginate and Its Derivatives in Lung Diseases
			19.2.1 Alginate and Lung Cancer
			19.2.2 Alginate and Lung Infection
			19.2.3 Alginate and COPD
			19.2.4 Alginate and Tuberculosis
		19.3 Alginate-Based Drug Delivery Systems for Antifungal Drugs
		19.4 Conclusion
		References
	20: Carrageenan-Based Drug Delivery Systems for Respiratory Disease
		20.1 Introduction
		20.2 Classification of Carrageenan Polymers
			20.2.1 Kappa (kappa)-Carrageenan
			20.2.2 Iota (iota)-Carrageenan
			20.2.3 Lambda (lambda)-Carrageenan
			20.2.4 Mu (mu)-Carrageenan, Nu(nu)-Carrageenan, and Theta (theta)-Carrageenan
		20.3 Carrageenan Polymer in Designing Diverse Drug Delivery Systems for the Management of Respiratory Disease
		20.4 Applications of Carrageenan and Its Derivatives for the Treatment of Various Respiration/Lung Diseases
			20.4.1 Role of CG in Respiratory Disorders Caused Due to Influenza Virus
			20.4.2 Role of CG in Respiratory Disorders Caused Due to Bacteria
			20.4.3 Role of CG in Respiratory Disorders Caused Due to SARS-Cov Virus
			20.4.4 Role of CG in Respiratory Disorders Caused Due to HRV
			20.4.5 Role of CG in the Treatment of Tuberculosis
		20.5 Safety and Toxicology of Carrageenan
		20.6 Conclusions
		References
	21: Agar-Based Drug Delivery Systems for Respiratory Disease
		21.1 Introduction of Agar Polymers in Drug Delivery Systems
		21.2 Classification of Agar Polymers
		21.3 Physiological Barriers to Agar-Based Drug Delivery Systems
		21.4 Application of Agar Polymer in Diverse Dosage Forms Which Can Be Used for Respiratory and Lung Disorders
			21.4.1 Embedding of Bacteria
			21.4.2 Agar-Based Microparticles
			21.4.3 Agar as a Polymer for the Development of Films
			21.4.4 Agar in a Form of Aerosols
			21.4.5 Agar-Based Nanoparticles
			21.4.6 Agar Used in the Formulation of Gels
			21.4.7 Agar in the Preparation of Tablets
			21.4.8 Use of Agarose as a Potential Polymer
		21.5 Conclusions
		References
	22: Clinical Trials and Regulatory Issues of Natural Polymers Employed in Respiratory Disease
		22.1 Introduction
		22.2 Preclinical Model Study
		22.3 Regulatory Aspects of Natural Polymers in Pharmaceuticals
		22.4 Conclusion
		References
	23: Elucidating the Molecular Mechanisms of Toxicity of Natural Polymer-Based Drug Delivery Systems Used in Various Pulmonary ...
		23.1 Introduction
			23.1.1 Arginine
			23.1.2 Chitosan
			23.1.3 Dextran
			23.1.4 Alginate
			23.1.5 Starch
			23.1.6 Albumin
			23.1.7 Collagen
			23.1.8 Gelatin
			23.1.9 Zein
		23.2 Pulmonary Toxicity of Natural Polymer-Based Drug Delivery Systems
			23.2.1 Oxidative Stress
			23.2.2 Inflammation
			23.2.3 Genotoxicity
			23.2.4 Other Toxicities of Natural Polymers (Neurotoxicity, Nephrotoxicity, Hepatotoxicity, and Cardiotoxicity)
			23.2.5 Neurotoxicity
			23.2.6 Hemocompatibility
		23.3 Conclusion
		References
	24: Compelling Impacts of Natural Polymer-Centered Drug Delivery Systems as Prophylactic and Therapeutic Approaches in Various...
		24.1 Introduction
		24.2 Prevalent Pulmonary Disorders and the Current Therapeutic Approaches
			24.2.1 Pulmonary Hypertension
			24.2.2 Cystic Fibrosis
			24.2.3 Asthma
			24.2.4 Chronic Obstructive Pulmonary Disorder (COPD)
			24.2.5 Emphysema
			24.2.6 Chronic Bronchitis
			24.2.7 Lung Cancer
			24.2.8 COVID-19
		24.3 Natural Polymer-Centered Drug Delivery Systems
			24.3.1 Chitosan
			24.3.2 Alginates (Sodium Alginates)
			24.3.3 Albumin
			24.3.4 Hydroxyapatite
			24.3.5 Hyaluronic Acid
		24.4 Advantages of Using a Natural Polymer-Centered Drug Delivery System for Lung Pathologies
		24.5 Conclusion
		References
	25: Future Prospects of Natural Polymer-Based Drug Delivery Systems in Combating Lung Diseases
		25.1 Introduction
		25.2 Natural Polymer-Based Drug Delivery for Lung Diseases
			25.2.1 Polysaccharide NPs
				25.2.1.1 Chitosan NPs
				25.2.1.2 Alginate NPs
			25.2.2 Gelatin NPs
		25.3 Advantages and Disadvantages of Natural Polymer-Based Drug Delivery Systems in Lung Diseases
		25.4 Future Aspect of Nature Polymer-Based Drug Delivery Systems in Lung Diseases
		25.5 Conclusion
		References




نظرات کاربران