دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Raymond S. T. Lee
سری:
ISBN (شابک) : 9789819919987, 9789819919994
ناشر: Springer
سال نشر: 2024
تعداد صفحات: [454]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Natural Language Processing. A Textbook with Python Implementation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش زبان طبیعی. کتاب درسی با پیاده سازی پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This textbook presents an up-to-date and comprehensive overview of Natural Language Processing (NLP), from basic concepts to core algorithms and key applications. Further, it contains seven step-by-step NLP workshops (total length: 14 hours) offering hands-on practice with essential Python tools like NLTK, spaCy, TensorFlow Kera, Transformer and BERT. The objective of this book is to provide readers with a fundamental grasp of NLP and its core technologies, and to enable them to build their own NLP applications (e.g. Chatbot systems) using Python-based NLP tools. It is both a textbook and NLP tool-book intended for the following readers: undergraduate students from various disciplines who want to learn NLP; lecturers and tutors who want to teach courses or tutorials for undergraduate/graduate students on NLP and related AI topics; and readers with various backgrounds who want to learn NLP, and more importantly, to build workable NLP applications after completing its 14 hours of Python-based workshops.
Preface Motivation of This Book Organization and Structure of This Book Readers of This Book How to Use This book? Acknowledgements About the Book Contents About the Author Abbreviations Part I: Concepts and Technology Chapter 1: Natural Language Processing 1.1 Introduction 1.2 Human Language and Intelligence 1.3 Linguistic Levels of Human Language 1.4 Human Language Ambiguity 1.5 A Brief History of NLP 1.5.1 First Stage: Machine Translation (Before 1960s) 1.5.2 Second Stage: Early AI on NLP from 1960s to 1970s 1.5.3 Third Stage: Grammatical Logic on NLP (1970s–1980s) 1.5.4 Fourth Stage: AI and Machine Learning (1980s–2000s) 1.5.5 Fifth Stage: AI, Big Data, and Deep Networks (2010s–Present) 1.6 NLP and AI 1.7 Main Components of NLP 1.8 Natural Language Understanding (NLU) 1.8.1 Speech Recognition 1.8.2 Syntax Analysis 1.8.3 Semantic Analysis 1.8.4 Pragmatic Analysis 1.9 Potential Applications of NLP 1.9.1 Machine Translation (MT) 1.9.2 Information Extraction (IE) 1.9.3 Information Retrieval (IR) 1.9.4 Sentiment Analysis 1.9.5 Question-Answering (Q&A) Chatbots References Chapter 2: N-Gram Language Model 2.1 Introduction 2.2 N-Gram Language Model 2.2.1 Basic NLP Terminology 2.2.2 Language Modeling and Chain Rule 2.3 Markov Chain in N-Gram Model 2.4 Live Example: The Adventures of Sherlock Holmes 2.5 Shannon’s Method in N-Gram Model 2.6 Language Model Evaluation and Smoothing Techniques 2.6.1 Perplexity 2.6.2 Extrinsic Evaluation Scheme 2.6.3 Zero Counts Problems 2.6.4 Smoothing Techniques 2.6.5 Laplace (Add-One) Smoothing 2.6.6 Add-k Smoothing 2.6.7 Backoff and Interpolation Smoothing 2.6.8 Good Turing Smoothing References Chapter 3: Part-of-Speech (POS) Tagging 3.1 What Is Part-of-Speech (POS)? 3.1.1 Nine Major POS in English Language 3.2 POS Tagging 3.2.1 What Is POS Tagging in Linguistics? 3.2.2 What Is POS Tagging in NLP? 3.2.3 POS Tags Used in the PENN Treebank Project 3.2.4 Why Do We Care About POS in NLP? 3.3 Major Components in NLU 3.3.1 Computational Linguistics and POS 3.3.2 POS and Semantic Meaning 3.3.3 Morphological and Syntactic Definition of POS 3.4 9 Key POS in English 3.4.1 English Word Classes 3.4.2 What Is a Preposition? 3.4.3 What Is a Conjunction? 3.4.4 What Is a Pronoun? 3.4.5 What Is a Verb? 3.5 Different Types of POS Tagset 3.5.1 What Is Tagset? 3.5.2 Ambiguous in POS Tags 3.5.3 POS Tagging Using Knowledge 3.6 Approaches for POS Tagging 3.6.1 Rule-Based Approach POS Tagging 3.6.2 Example of Rule-Based POS Tagging 3.6.3 Example of Stochastic-Based POS Tagging 3.6.4 Hybrid Approach for POS Tagging Using Brill Taggers 3.6.4.1 What Is Transformation-Based Learning? 3.6.4.2 Hybrid POS Tagging: Brill Tagger 3.6.4.3 Learning Brill Tagger Transformations 3.7 Taggers Evaluations 3.7.1 How Good Is an POS Tagging Algorithm? References Chapter 4: Syntax and Parsing 4.1 Introduction and Motivation 4.2 Syntax Analysis 4.2.1 What Is Syntax 4.2.2 Syntactic Rules 4.2.3 Common Syntactic Patterns 4.2.4 Importance of Syntax and Parsing in NLP 4.3 Types of Constituents in Sentences 4.3.1 What Is Constituent? 4.3.2 Kinds of Constituents 4.3.3 Noun-Phrase (NP) 4.3.4 Verb-Phrase (VP) 4.3.5 Complexity on Simple Constituents 4.3.6 Verb Phrase Subcategorization 4.3.7 The Role of Lexicon in Parsing 4.3.8 Recursion in Grammar Rules 4.4 Context-Free Grammar (CFG) 4.4.1 What Is Context-Free Language (CFL)? 4.4.2 What Is Context-Free Grammar (CFG)? 4.4.3 Major Components of CFG 4.4.4 Derivations Using CFG 4.5 CFG Parsing 4.5.1 Morphological Parsing 4.5.2 Phonological Parsing 4.5.3 Syntactic Parsing 4.5.4 Parsing as a Kind of Tree Searching 4.5.5 CFG for Fragment of English 4.5.6 Parse Tree for “Play the Piano” for Prior CFG 4.5.7 Top-Down Parser 4.5.8 Bottom-Up Parser 4.5.9 Control of Parsing 4.5.10 Pros and Cons of Top-Down vs. Bottom-Up Parsing 4.5.10.1 Top-Down Parsing Approach Pros Cons 4.5.10.2 Bottom-Up Parsing Approach Pros Cons 4.6 Lexical and Probabilistic Parsing 4.6.1 Why Using Probabilities in Parsing? 4.6.2 Semantics with Parsing 4.6.3 What Is PCFG? 4.6.4 A Simple Example of PCFG 4.6.5 Using Probabilities for Language Modeling 4.6.6 Limitations for PCFG 4.6.7 The Fix: Lexicalized Parsing References Chapter 5: Meaning Representation 5.1 Introduction 5.2 What Is Meaning? 5.3 Meaning Representations 5.4 Semantic Processing 5.5 Common Meaning Representation 5.5.1 First-Order Predicate Calculus (FOPC) 5.5.2 Semantic Networks 5.5.3 Conceptual Dependency Diagram (CDD) 5.5.4 Frame-Based Representation 5.6 Requirements for Meaning Representation 5.6.1 Verifiability 5.6.2 Ambiguity 5.6.3 Vagueness 5.6.4 Canonical Forms 5.6.4.1 What Is Canonical Form? 5.6.4.2 Canonical Form in Meaning Representation 5.6.4.3 Canonical Forms: Pros and Cons Advantages Disadvantages 5.7 Inference 5.7.1 What Is Inference? 5.7.2 Example of Inferencing with FOPC 5.8 Fillmore’s Theory of Universal Cases 5.8.1 What Is Fillmore’s Theory of Universal Cases? 5.8.2 Major Case Roles in Fillmore’s Theory 5.8.3 Complications in Case Roles 5.8.3.1 Selectional Restrictions 5.9 First-Order Predicate Calculus 5.9.1 FOPC Representation Scheme 5.9.2 Major Elements of FOPC 5.9.3 Predicate-Argument Structure of FOPC 5.9.4 Meaning Representation Problems in FOPC 5.9.5 Inferencing Using FOPC References Chapter 6: Semantic Analysis 6.1 Introduction 6.1.1 What Is Semantic Analysis? 6.1.2 The Importance of Semantic Analysis in NLP 6.1.3 How Human Is Good in Semantic Analysis? 6.2 Lexical Vs Compositional Semantic Analysis 6.2.1 What Is Lexical Semantic Analysis? 6.2.2 What Is Compositional Semantic Analysis? 6.3 Word Senses and Relations 6.3.1 What Is Word Sense? 6.3.2 Types of Lexical Semantics 6.3.2.1 Homonymy 6.3.2.2 Polysemy 6.3.2.3 Metonymy 6.3.2.4 Zeugma Test 6.3.2.5 Synonyms 6.3.2.6 Antonyms 6.3.2.7 Hyponymy and Hypernymy 6.3.2.8 Hyponyms and Instances 6.4 Word Sense Disambiguation 6.4.1 What Is Word Sense Disambiguation (WSD)? 6.4.2 Difficulties in Word Sense Disambiguation 6.4.3 Method for Word Sense Disambiguation 6.5 WordNet and Online Thesauri 6.5.1 What Is WordNet? 6.5.2 What Is Synsets? 6.5.3 Knowledge Structure of WordNet 6.5.4 What Are Major Lexical Relations Captured in WordNet? 6.5.5 Applications of WordNet and Thesauri? 6.6 Other Online Thesauri: MeSH 6.6.1 What Is MeSH? 6.6.2 Uses of the MeSH Ontology 6.7 Word Similarity and Thesaurus Methods 6.8 Introduction 6.8.1 Path-based Similarity 6.8.2 Problems with Path-based Similarity 6.8.3 Information Content Similarity 6.8.4 The Resnik Method 6.8.5 The Dekang Lin Method 6.8.6 The (Extended) Lesk Algorithm 6.9 Distributed Similarity 6.9.1 Distributional Models of Meaning 6.9.2 Word Vectors 6.9.3 Term-Document Matrix 6.9.4 Point-wise Mutual Information (PMI) 6.9.5 Example of Computing PPMI on a Term-Context Matrix 6.9.6 Weighing PMI Techniques 6.9.7 K-Smoothing in PMI Computation 6.9.8 Context and Word Similarity Measurement 6.9.9 Evaluating Similarity References Chapter 7: Pragmatic Analysis and Discourse 7.1 Introduction 7.2 Discourse Phenomena 7.2.1 Coreference Resolution 7.2.2 Why Is it Important? 7.2.3 Coherence and Coreference 7.2.3.1 What Is Coherence? 7.2.3.2 What Is Coreference? 7.2.4 Importance of Coreference Relations 7.2.5 Entity-Based Coherence 7.3 Discourse Segmentation 7.3.1 What Is Discourse Segmentation? 7.3.2 Unsupervised Discourse Segmentation 7.3.3 Hearst’s TextTiling Method 7.3.4 TextTiling Algorithm 7.3.5 Supervised Discourse Segmentation 7.4 Discourse Coherence 7.4.1 What Makes a Text Coherent? 7.4.2 What Is Coherence Relation? 7.4.3 Types of Coherence Relations 7.4.4 Hierarchical Structure of Discourse Coherence 7.4.5 Types of Referring Expressions 7.4.6 Features for Filtering Potential Referents 7.4.7 Preferences in Pronoun Interpretation 7.5 Algorithms for Coreference Resolution 7.5.1 Introduction 7.5.2 Hobbs Algorithm 7.5.2.1 What Is Hobbs Algorithm? 7.5.2.2 Hobbs’ Algorithm 7.5.2.3 Example of Using Hobbs’ Algorithm 7.5.2.4 Performance of Hobbs’ Algorithm 7.5.3 Centering Algorithm 7.5.3.1 What Is Centering Algorithm? 7.5.3.2 Part I: Initial Setting 7.5.3.3 Part II: Constraints 7.5.3.4 Part III: Rules and Algorithm 7.5.3.5 Example of Centering Algorithm 7.5.3.6 Performance of Centering Algorithm 7.5.4 Machine Learning Method 7.5.4.1 What is Machine Learning Method? 7.5.4.2 Performance of Log-Linear Model 7.5.4.3 Other Advanced Machine Learning Models 7.6 Evaluation References Chapter 8: Transfer Learning and Transformer Technology 8.1 What Is Transfer Learning? 8.2 Motivation of Transfer Learning 8.2.1 Categories of Transfer Learning 8.3 Solutions of Transfer Learning 8.4 Recurrent Neural Network (RNN) 8.4.1 What Is RNN? 8.4.2 Motivation of RNN 8.4.3 RNN Architecture 8.4.4 Long Short-Term Memory (LSTM) Network 8.4.4.1 What Is LSTM? 8.4.4.2 LSTM Architecture 8.4.5 Gate Recurrent Unit (GRU) 8.4.5.1 What Is GRU? 8.4.5.2 GRU Inner Architecture 8.4.6 Bidirectional Recurrent Neural Networks (BRNNs) 8.4.6.1 What Is BRNN? 8.5 Transformer Technology 8.5.1 What Is Transformer? 8.5.2 Transformer Architecture 8.5.2.1 Encoder 8.5.2.2 Decoder 8.5.3 Deep Into Encoder 8.5.3.1 Positional Encoding 8.5.3.2 Self-Attention Mechanism 8.5.3.3 Multi-Head Attention 8.5.3.4 Layer Normalization of Attention Sublayer 8.5.3.5 Feedforward Layer 8.6 BERT 8.6.1 What Is BERT? 8.6.2 Architecture of BERT 8.6.3 Training of BERT 8.6.3.1 Pre-training BERT 8.6.3.2 Next Sentence Prediction (NSP) 8.6.3.3 Fine-tuning BERT 8.7 Other Related Transformer Technology 8.7.1 Transformer-XL 8.7.1.1 Motivation 8.7.1.2 Transformer-XL technology 8.7.2 ALBERT References Chapter 9: Major NLP Applications 9.1 Introduction 9.2 Information Retrieval Systems 9.2.1 Introduction to IR Systems 9.2.2 Vector Space Model in IR 9.2.3 Term Distribution Models in IR 9.2.4 Latent Semantic Indexing in IR 9.2.4.1 Query-Likelihood 9.2.4.2 Document-Likelihood 9.2.5 Discourse Segmentation in IR 9.3 Text Summarization Systems 9.3.1 Introduction to Text Summarization Systems 9.3.1.1 Motivation 9.3.1.2 Task Definition 9.3.1.3 Basic Approach 9.3.1.4 Task Goals 9.3.1.5 Task Sub-processes 9.3.2 Text Summarization Datasets 9.3.3 Types of Summarization Systems 9.3.4 Query-Focused Vs Generic Summarization Systems 9.3.4.1 Query-Focused Summarization Systems 9.3.4.2 Generic Summarization Systems 9.3.5 Single and Multiple Document Summarization 9.3.5.1 Single Document Summarization 9.3.5.2 Multiple Document Summarization 9.3.6 Contemporary Text Summarization Systems 9.3.6.1 Contemporary Extractive Text Summarization (ETS) System 9.3.6.2 Graph-Based Method 9.3.6.3 Feature-Based Method 9.3.6.4 Topic Based Method 9.3.6.5 Grammar-Based Method 9.3.6.6 Contemporary Abstractive Text Summarization (ATS) System 9.3.6.7 Aided Summarization Method 9.3.6.8 Contemporary Combined Text Summarization System 9.4 Question-and-Answering Systems 9.4.1 QA System and AI 9.4.1.1 Rule-based QA Systems 9.4.1.2 Information Retrieval (IR)-based QA Systems 9.4.1.3 Neural Network-Based QA Systems 9.4.2 Overview of Industrial QA Systems 9.4.2.1 AliMe QA System 9.4.2.2 Xiao Ice QA System 9.4.2.3 TransferTransfo Conversational Agents References Part II: Natural Language Processing Workshops with Python Implementation in 14 Hours Chapter 10: Workshop#1 Basics of Natural Language Toolkit (Hour 1–2) 10.1 Introduction 10.2 What Is Natural Language Toolkit (NLTK)? 10.3 A Simple Text Tokenization Example Using NLTK 10.4 How to Install NLTK? 10.5 Why Using Python for NLP? 10.6 NLTK with Basic Text Processing in NLP 10.7 Simple Text Analysis with NLTK 10.8 Text Analysis Using Lexical Dispersion Plot 10.8.1 What Is a Lexical Dispersion Plot? 10.8.2 Lexical Dispersion Plot Over Context Using Sense and Sensibility 10.8.3 Lexical Dispersion Plot Over Time Using Inaugural Address Corpus 10.9 Tokenization in NLP with NLTK 10.9.1 What Is Tokenization in NLP? 10.9.2 Different Between Tokenize() vs Split() 10.9.3 Count Distinct Tokens 10.9.4 Lexical Diversity 10.9.4.1 Token Usage Frequency (Lexical Diversity) 10.9.4.2 Word Usage Frequency 10.10 Basic Statistical Tools in NLTK 10.10.1 Frequency Distribution: FreqDist() 10.10.1.1 FreqDist() as Dictionary Object 10.10.1.2 Access FreqDist of Any Token Type 10.10.1.3 Frequency Distribution Plot from NLTK 10.10.2 Rare Words: Hapax 10.10.3 Collocations 10.10.3.1 What Are Collocations? 10.10.3.2 Collocations in NLTK References Chapter 11: Workshop#2 N-grams in NLTK and Tokenization in SpaCy (Hour 3–4) 11.1 Introduction 11.2 What Is N-Gram? 11.3 Applications of N-Grams in NLP 11.4 Generation of N-Grams in NLTK 11.5 Generation of N-Grams Statistics 11.6 spaCy in NLP 11.6.1 What Is spaCy? 11.7 How to Install spaCy? 11.8 Tokenization using spaCy 11.8.1 Step 1: Import spaCy Module 11.8.2 Step 2: Load spaCy Module "en_core_web_sm". 11.8.3 Step 3: Open and Read Text File "Adventures_Holmes.txt" Into file_handler "fholmes" 11.8.4 Step 4: Read Adventures of Sherlock Holmes 11.8.5 Step 5: Replace All Newline Symbols 11.8.6 Step 6: Simple Counting 11.8.7 Step 7: Invoke nlp() Method in spaCy 11.8.8 Step 8: Convert Text Document Into Sentence Object 11.8.9 Step 9: Directly Tokenize Text Document References Chapter 12: Workshop#3 POS Tagging Using NLTK (Hour 5–6) 12.1 Introduction 12.2 A Revisit on Tokenization with NLTK 12.3 Stemming Using NLTK 12.3.1 What Is Stemming? 12.3.2 Why Stemming? 12.3.3 How to Perform Stemming? 12.3.4 Porter Stemmer 12.3.5 Snowball Stemmer 12.4 Stop-Words Removal with NLTK 12.4.1 What Are Stop-Words? 12.4.2 NLTK Stop-Words List 12.4.3 Try Some Texts 12.4.4 Create Your Own Stop-Words 12.4.4.1 Step 1: Create Own Stop-Word Library List 12.4.4.2 Step 2: Check Object Type and Will See It Has a Simple List 12.4.4.3 Step 3: Study Stop-Word List 12.4.4.4 Step 4: Add New Stop-Word "sampleSW" Using Append() 12.5 Text Analysis with NLTK 12.6 Integration with WordCloud 12.6.1 What Is WordCloud? 12.7 POS Tagging with NLTK 12.7.1 What Is POS Tagging? 12.7.2 Universal POS Tagset 12.7.3 PENN Treebank Tagset (English and Chinese) 12.7.4 Applications of POS Tagging 12.8 Create Own POS Tagger with NLTK References Chapter 13: Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8) 13.1 Introduction 13.2 What Are Word Vectors? 13.3 Understanding Word Vectors 13.3.1 Example: A Simple Word Vector 13.4 A Taste of Word Vectors 13.5 Analogies and Vector Operations 13.6 How to Create Word Vectors? 13.7 spaCy Pre-trained Word Vectors 13.8 Similarity Method in Semantic Analysis 13.9 Advanced Semantic Similarity Methods with spaCy 13.9.1 Understanding Semantic Similarity 13.9.2 Euclidian Distance 13.9.3 Cosine Distance and Cosine Similarity 13.9.4 Categorizing Text with Semantic Similarity 13.9.5 Extracting Key Phrases 13.9.6 Extracting and Comparing Named Entities References Chapter 14: Workshop#5 Sentiment Analysis and Text Classification with LSTM Using spaCy (Hour 9–10) 14.1 Introduction 14.2 Text Classification with spaCy and LSTM Technology 14.3 Technical Requirements 14.4 Text Classification in a Nutshell 14.4.1 What Is Text Classification? 14.4.2 Text Classification as AI Applications 14.5 Text Classifier with spaCy NLP Pipeline 14.5.1 TextCategorizer Class 14.5.2 Formatting Training Data for the TextCategorizer 14.5.3 System Training 14.5.4 System Testing 14.5.5 Training TextCategorizer for Multi-Label Classification 14.6 Sentiment Analysis with spaCy 14.6.1 IMDB Large Movie Review Dataset 14.6.2 Explore the Dataset 14.6.3 Training the TextClassfier 14.7 Artificial Neural Network in a Nutshell 14.8 An Overview of TensorFlow and Keras 14.9 Sequential Modeling with LSTM Technology 14.10 Keras Tokenizer in NLP 14.10.1 Embedding Words 14.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy 14.11.1 Step 1: Dataset 14.11.2 Step 2: Data and Vocabulary Preparation 14.11.3 Step 3: Implement the Input Layer 14.11.4 Step 4: Implement the Embedding Layer 14.11.5 Step 5: Implement the LSTM Layer 14.11.6 Step 6: Implement the Output Layer 14.11.7 Step 7: System Compilation 14.11.8 Step 8: Model Fitting and Experiment Evaluation References Chapter 15: Workshop#6 Transformers with spaCy and TensorFlow (Hour 11–12) 15.1 Introduction 15.2 Technical Requirements 15.3 Transformers and Transfer Learning in a Nutshell 15.4 Why Transformers? 15.5 An Overview of BERT Technology 15.5.1 What Is BERT? 15.5.2 BERT Architecture 15.5.3 BERT Input Format 15.5.4 How to Train BERT? 15.6 Transformers with TensorFlow 15.6.1 HuggingFace Transformers 15.6.2 Using the BERT Tokenizer 15.6.3 Word Vectors in BERT 15.7 Revisit Text Classification Using BERT 15.7.1 Data Preparation 15.7.1.1 Import Related Modules 15.7.1.2 Read emails.csv Datafile 15.7.1.3 Use dropna() to Remove Record with Missing Contents 15.7.2 Start the BERT Model Construction 15.7.2.1 Import BERT Models and Tokenizer 15.7.2.2 Process Input Data with BertTokenizer 15.7.2.3 Double Check Databank to See Whether Data Has 15.7.2.4 Use BERT Tokenizer 15.7.2.5 Define Keras Model Using the Following Lines 15.7.2.6 Perform Model Fitting and Use 1 Epoch to Save Time 15.7.2.7 Review Model Summary 15.8 Transformer Pipeline Technology 15.8.1 Transformer Pipeline for Sentiment Analysis 15.8.2 Transformer Pipeline for QA System 15.9 Transformer and spaCy References Chapter 16: Workshop#7 Building Chatbot with TensorFlow and Transformer Technology (Hour 13–14) 16.1 Introduction 16.2 Technical Requirements 16.3 AI Chatbot in a Nutshell 16.3.1 What Is a Chatbot? 16.3.2 What Is a Wake Word in Chatbot? 16.3.2.1 Tailor-Made Wake Word 16.3.2.2 Why Embedded Word Detection? 16.3.3 NLP Components in a Chatbot 16.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 16.4.1 The Chatbot Dataset 16.4.2 Movie Dialog Preprocessing 16.4.3 Tokenization of Movie Conversation 16.4.4 Filtering and Padding Process 16.4.5 Creation of TensorFlow Movie Dataset Object (mDS) 16.4.6 Calculate Attention Learning Weights 16.4.7 Multi-Head-Attention (MHAttention) 16.4.8 System Implementation 16.4.8.1 Step 1. Implement Masking 16.4.8.2 Step 2. Implement Positional Encoding 16.4.8.3 Step 3. Implement Encoder Layer 16.4.8.4 Step 4. Implement Encoder 16.4.8.5 Step 5. Implement Decoder Layer 16.4.8.6 Step 6. Implement Decoder 16.4.8.7 Step 7. Implement Transformer 16.4.8.8 Step 8. Model Training 16.4.8.9 Step 9. Implement Model Evaluation Function 16.4.8.10 Step 10. Implement Customized Learning Rate 16.4.8.11 Step 11. Compile Chatbot Model 16.4.8.12 Step 12. System Training (Model Fitting) 16.4.8.13 Step 13. System Evaluation and Live Chatting 16.5 Related Works References Index