ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Natural Language Processing. A Textbook with Python Implementation

دانلود کتاب پردازش زبان طبیعی. کتاب درسی با پیاده سازی پایتون

Natural Language Processing. A Textbook with Python Implementation

مشخصات کتاب

Natural Language Processing. A Textbook with Python Implementation

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9789819919987, 9789819919994 
ناشر: Springer 
سال نشر: 2024 
تعداد صفحات: [454] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Natural Language Processing. A Textbook with Python Implementation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پردازش زبان طبیعی. کتاب درسی با پیاده سازی پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پردازش زبان طبیعی. کتاب درسی با پیاده سازی پایتون




توضیحاتی درمورد کتاب به خارجی

This textbook presents an up-to-date and comprehensive overview of Natural Language Processing (NLP), from basic concepts to core algorithms and key applications. Further, it contains seven step-by-step NLP workshops (total length: 14 hours) offering hands-on practice with essential Python tools like NLTK, spaCy, TensorFlow Kera, Transformer and BERT. The objective of this book is to provide readers with a fundamental grasp of NLP and its core technologies, and to enable them to build their own NLP applications (e.g. Chatbot systems) using Python-based NLP tools. It is both a textbook and NLP tool-book intended for the following readers: undergraduate students from various disciplines who want to learn NLP; lecturers and tutors who want to teach courses or tutorials for undergraduate/graduate students on NLP and related AI topics; and readers with various backgrounds who want to learn NLP, and more importantly, to build workable NLP applications after completing its 14 hours of Python-based workshops.



فهرست مطالب

Preface
	Motivation of This Book
	Organization and Structure of This Book
	Readers of This Book
	How to Use This book?
Acknowledgements
About the Book
Contents
About the Author
Abbreviations
Part I: Concepts and Technology
	Chapter 1: Natural Language Processing
		1.1 Introduction
		1.2 Human Language and Intelligence
		1.3 Linguistic Levels of Human Language
		1.4 Human Language Ambiguity
		1.5 A Brief History of NLP
			1.5.1 First Stage: Machine Translation (Before 1960s)
			1.5.2 Second Stage: Early AI on NLP from 1960s to 1970s
			1.5.3 Third Stage: Grammatical Logic on NLP (1970s–1980s)
			1.5.4 Fourth Stage: AI and Machine Learning (1980s–2000s)
			1.5.5 Fifth Stage: AI, Big Data, and Deep Networks (2010s–Present)
		1.6 NLP and AI
		1.7 Main Components of NLP
		1.8 Natural Language Understanding (NLU)
			1.8.1 Speech Recognition
			1.8.2 Syntax Analysis
			1.8.3 Semantic Analysis
			1.8.4 Pragmatic Analysis
		1.9 Potential Applications of NLP
			1.9.1 Machine Translation (MT)
			1.9.2 Information Extraction (IE)
			1.9.3 Information Retrieval (IR)
			1.9.4 Sentiment Analysis
			1.9.5 Question-Answering (Q&A) Chatbots
		References
	Chapter 2: N-Gram Language Model
		2.1 Introduction
		2.2 N-Gram Language Model
			2.2.1 Basic NLP Terminology
			2.2.2 Language Modeling and Chain Rule
		2.3 Markov Chain in N-Gram Model
		2.4 Live Example: The Adventures of Sherlock Holmes
		2.5 Shannon’s Method in N-Gram Model
		2.6 Language Model Evaluation and Smoothing Techniques
			2.6.1 Perplexity
			2.6.2 Extrinsic Evaluation Scheme
			2.6.3 Zero Counts Problems
			2.6.4 Smoothing Techniques
			2.6.5 Laplace (Add-One) Smoothing
			2.6.6 Add-k Smoothing
			2.6.7 Backoff and Interpolation Smoothing
			2.6.8 Good Turing Smoothing
		References
	Chapter 3: Part-of-Speech (POS) Tagging
		3.1 What Is Part-of-Speech (POS)?
			3.1.1 Nine Major POS in English Language
		3.2 POS Tagging
			3.2.1 What Is POS Tagging in Linguistics?
			3.2.2 What Is POS Tagging in NLP?
			3.2.3 POS Tags Used in the PENN Treebank Project
			3.2.4 Why Do We Care About POS in NLP?
		3.3 Major Components in NLU
			3.3.1 Computational Linguistics and POS
			3.3.2 POS and Semantic Meaning
			3.3.3 Morphological and Syntactic Definition of POS
		3.4 9 Key POS in English
			3.4.1 English Word Classes
			3.4.2 What Is a Preposition?
			3.4.3 What Is a Conjunction?
			3.4.4 What Is a Pronoun?
			3.4.5 What Is a Verb?
		3.5 Different Types of POS Tagset
			3.5.1 What Is Tagset?
			3.5.2 Ambiguous in POS Tags
			3.5.3 POS Tagging Using Knowledge
		3.6 Approaches for POS Tagging
			3.6.1 Rule-Based Approach POS Tagging
			3.6.2 Example of Rule-Based POS Tagging
			3.6.3 Example of Stochastic-Based POS Tagging
			3.6.4 Hybrid Approach for POS Tagging Using Brill Taggers
				3.6.4.1 What Is Transformation-Based Learning?
				3.6.4.2 Hybrid POS Tagging: Brill Tagger
				3.6.4.3 Learning Brill Tagger Transformations
		3.7 Taggers Evaluations
			3.7.1 How Good Is an POS Tagging Algorithm?
		References
	Chapter 4: Syntax and Parsing
		4.1 Introduction and Motivation
		4.2 Syntax Analysis
			4.2.1 What Is Syntax
			4.2.2 Syntactic Rules
			4.2.3 Common Syntactic Patterns
			4.2.4 Importance of Syntax and Parsing in NLP
		4.3 Types of Constituents in Sentences
			4.3.1 What Is Constituent?
			4.3.2 Kinds of Constituents
			4.3.3 Noun-Phrase (NP)
			4.3.4 Verb-Phrase (VP)
			4.3.5 Complexity on Simple Constituents
			4.3.6 Verb Phrase Subcategorization
			4.3.7 The Role of Lexicon in Parsing
			4.3.8 Recursion in Grammar Rules
		4.4 Context-Free Grammar (CFG)
			4.4.1 What Is Context-Free Language (CFL)?
			4.4.2 What Is Context-Free Grammar (CFG)?
			4.4.3 Major Components of CFG
			4.4.4 Derivations Using CFG
		4.5 CFG Parsing
			4.5.1 Morphological Parsing
			4.5.2 Phonological Parsing
			4.5.3 Syntactic Parsing
			4.5.4 Parsing as a Kind of Tree Searching
			4.5.5 CFG for Fragment of English
			4.5.6 Parse Tree for “Play the Piano” for Prior CFG
			4.5.7 Top-Down Parser
			4.5.8 Bottom-Up Parser
			4.5.9 Control of Parsing
			4.5.10 Pros and Cons of Top-Down vs. Bottom-Up Parsing
				4.5.10.1 Top-Down Parsing Approach
					Pros
					Cons
				4.5.10.2 Bottom-Up Parsing Approach
					Pros
					Cons
		4.6 Lexical and Probabilistic Parsing
			4.6.1 Why Using Probabilities in Parsing?
			4.6.2 Semantics with Parsing
			4.6.3 What Is PCFG?
			4.6.4 A Simple Example of PCFG
			4.6.5 Using Probabilities for Language Modeling
			4.6.6 Limitations for PCFG
			4.6.7 The Fix: Lexicalized Parsing
		References
	Chapter 5: Meaning Representation
		5.1 Introduction
		5.2 What Is Meaning?
		5.3 Meaning Representations
		5.4 Semantic Processing
		5.5 Common Meaning Representation
			5.5.1 First-Order Predicate Calculus (FOPC)
			5.5.2 Semantic Networks
			5.5.3 Conceptual Dependency Diagram (CDD)
			5.5.4 Frame-Based Representation
		5.6 Requirements for Meaning Representation
			5.6.1 Verifiability
			5.6.2 Ambiguity
			5.6.3 Vagueness
			5.6.4 Canonical Forms
				5.6.4.1 What Is Canonical Form?
				5.6.4.2 Canonical Form in Meaning Representation
				5.6.4.3 Canonical Forms: Pros and Cons
					Advantages
					Disadvantages
		5.7 Inference
			5.7.1 What Is Inference?
			5.7.2 Example of Inferencing with FOPC
		5.8 Fillmore’s Theory of Universal Cases
			5.8.1 What Is Fillmore’s Theory of Universal Cases?
			5.8.2 Major Case Roles in Fillmore’s Theory
			5.8.3 Complications in Case Roles
				5.8.3.1 Selectional Restrictions
		5.9 First-Order Predicate Calculus
			5.9.1 FOPC Representation Scheme
			5.9.2 Major Elements of FOPC
			5.9.3 Predicate-Argument Structure of FOPC
			5.9.4 Meaning Representation Problems in FOPC
			5.9.5 Inferencing Using FOPC
		References
	Chapter 6: Semantic Analysis
		6.1 Introduction
			6.1.1 What Is Semantic Analysis?
			6.1.2 The Importance of Semantic Analysis in NLP
			6.1.3 How Human Is Good in Semantic Analysis?
		6.2 Lexical Vs Compositional Semantic Analysis
			6.2.1 What Is Lexical Semantic Analysis?
			6.2.2 What Is Compositional Semantic Analysis?
		6.3 Word Senses and Relations
			6.3.1 What Is Word Sense?
			6.3.2 Types of Lexical Semantics
				6.3.2.1 Homonymy
				6.3.2.2 Polysemy
				6.3.2.3 Metonymy
				6.3.2.4 Zeugma Test
				6.3.2.5 Synonyms
				6.3.2.6 Antonyms
				6.3.2.7 Hyponymy and Hypernymy
				6.3.2.8 Hyponyms and Instances
		6.4 Word Sense Disambiguation
			6.4.1 What Is Word Sense Disambiguation (WSD)?
			6.4.2 Difficulties in Word Sense Disambiguation
			6.4.3 Method for Word Sense Disambiguation
		6.5 WordNet and Online Thesauri
			6.5.1 What Is WordNet?
			6.5.2 What Is Synsets?
			6.5.3 Knowledge Structure of WordNet
			6.5.4 What Are Major Lexical Relations Captured in WordNet?
			6.5.5 Applications of WordNet and Thesauri?
		6.6 Other Online Thesauri: MeSH
			6.6.1 What Is MeSH?
			6.6.2 Uses of the MeSH Ontology
		6.7 Word Similarity and Thesaurus Methods
		6.8 Introduction
			6.8.1 Path-based Similarity
			6.8.2 Problems with Path-based Similarity
			6.8.3 Information Content Similarity
			6.8.4 The Resnik Method
			6.8.5 The Dekang Lin Method
			6.8.6 The (Extended) Lesk Algorithm
		6.9 Distributed Similarity
			6.9.1 Distributional Models of Meaning
			6.9.2 Word Vectors
			6.9.3 Term-Document Matrix
			6.9.4 Point-wise Mutual Information (PMI)
			6.9.5 Example of Computing PPMI on a Term-Context Matrix
			6.9.6 Weighing PMI Techniques
			6.9.7 K-Smoothing in PMI Computation
			6.9.8 Context and Word Similarity Measurement
			6.9.9 Evaluating Similarity
		References
	Chapter 7: Pragmatic Analysis and Discourse
		7.1 Introduction
		7.2 Discourse Phenomena
			7.2.1 Coreference Resolution
			7.2.2 Why Is it Important?
			7.2.3 Coherence and Coreference
				7.2.3.1 What Is Coherence?
				7.2.3.2 What Is Coreference?
			7.2.4 Importance of Coreference Relations
			7.2.5 Entity-Based Coherence
		7.3 Discourse Segmentation
			7.3.1 What Is Discourse Segmentation?
			7.3.2 Unsupervised Discourse Segmentation
			7.3.3 Hearst’s TextTiling Method
			7.3.4 TextTiling Algorithm
			7.3.5 Supervised Discourse Segmentation
		7.4 Discourse Coherence
			7.4.1 What Makes a Text Coherent?
			7.4.2 What Is Coherence Relation?
			7.4.3 Types of Coherence Relations
			7.4.4 Hierarchical Structure of Discourse Coherence
			7.4.5 Types of Referring Expressions
			7.4.6 Features for Filtering Potential Referents
			7.4.7 Preferences in Pronoun Interpretation
		7.5 Algorithms for Coreference Resolution
			7.5.1 Introduction
			7.5.2 Hobbs Algorithm
				7.5.2.1 What Is Hobbs Algorithm?
				7.5.2.2 Hobbs’ Algorithm
				7.5.2.3 Example of Using Hobbs’ Algorithm
				7.5.2.4 Performance of Hobbs’ Algorithm
			7.5.3 Centering Algorithm
				7.5.3.1 What Is Centering Algorithm?
				7.5.3.2 Part I: Initial Setting
				7.5.3.3 Part II: Constraints
				7.5.3.4 Part III: Rules and Algorithm
				7.5.3.5 Example of Centering Algorithm
				7.5.3.6 Performance of Centering Algorithm
			7.5.4 Machine Learning Method
				7.5.4.1 What is Machine Learning Method?
				7.5.4.2 Performance of Log-Linear Model
				7.5.4.3 Other Advanced Machine Learning Models
		7.6 Evaluation
		References
	Chapter 8: Transfer Learning and Transformer Technology
		8.1 What Is Transfer Learning?
		8.2 Motivation of Transfer Learning
			8.2.1 Categories of Transfer Learning
		8.3 Solutions of Transfer Learning
		8.4 Recurrent Neural Network (RNN)
			8.4.1 What Is RNN?
			8.4.2 Motivation of RNN
			8.4.3 RNN Architecture
			8.4.4 Long Short-Term Memory (LSTM) Network
				8.4.4.1 What Is LSTM?
				8.4.4.2 LSTM Architecture
			8.4.5 Gate Recurrent Unit (GRU)
				8.4.5.1 What Is GRU?
				8.4.5.2 GRU Inner Architecture
			8.4.6 Bidirectional Recurrent Neural Networks (BRNNs)
				8.4.6.1 What Is BRNN?
		8.5 Transformer Technology
			8.5.1 What Is Transformer?
			8.5.2 Transformer Architecture
				8.5.2.1 Encoder
				8.5.2.2 Decoder
			8.5.3 Deep Into Encoder
				8.5.3.1 Positional Encoding
				8.5.3.2 Self-Attention Mechanism
				8.5.3.3 Multi-Head Attention
				8.5.3.4 Layer Normalization of Attention Sublayer
				8.5.3.5 Feedforward Layer
		8.6 BERT
			8.6.1 What Is BERT?
			8.6.2 Architecture of BERT
			8.6.3 Training of BERT
				8.6.3.1 Pre-training BERT
				8.6.3.2 Next Sentence Prediction (NSP)
				8.6.3.3 Fine-tuning BERT
		8.7 Other Related Transformer Technology
			8.7.1 Transformer-XL
				8.7.1.1 Motivation
				8.7.1.2 Transformer-XL technology
			8.7.2 ALBERT
		References
	Chapter 9: Major NLP Applications
		9.1 Introduction
		9.2 Information Retrieval Systems
			9.2.1 Introduction to IR Systems
			9.2.2 Vector Space Model in IR
			9.2.3 Term Distribution Models in IR
			9.2.4 Latent Semantic Indexing in IR
				9.2.4.1 Query-Likelihood
				9.2.4.2 Document-Likelihood
			9.2.5 Discourse Segmentation in IR
		9.3 Text Summarization Systems
			9.3.1 Introduction to Text Summarization Systems
				9.3.1.1 Motivation
				9.3.1.2 Task Definition
				9.3.1.3 Basic Approach
				9.3.1.4 Task Goals
				9.3.1.5 Task Sub-processes
			9.3.2 Text Summarization Datasets
			9.3.3 Types of Summarization Systems
			9.3.4 Query-Focused Vs Generic Summarization Systems
				9.3.4.1 Query-Focused Summarization Systems
				9.3.4.2 Generic Summarization Systems
			9.3.5 Single and Multiple Document Summarization
				9.3.5.1 Single Document Summarization
				9.3.5.2 Multiple Document Summarization
			9.3.6 Contemporary Text Summarization Systems
				9.3.6.1 Contemporary Extractive Text Summarization (ETS) System
				9.3.6.2 Graph-Based Method
				9.3.6.3 Feature-Based Method
				9.3.6.4 Topic Based Method
				9.3.6.5 Grammar-Based Method
				9.3.6.6 Contemporary Abstractive Text Summarization (ATS) System
				9.3.6.7 Aided Summarization Method
				9.3.6.8 Contemporary Combined Text Summarization System
		9.4 Question-and-Answering Systems
			9.4.1 QA System and AI
				9.4.1.1 Rule-based QA Systems
				9.4.1.2 Information Retrieval (IR)-based QA Systems
				9.4.1.3 Neural Network-Based QA Systems
			9.4.2 Overview of Industrial QA Systems
				9.4.2.1 AliMe QA System
				9.4.2.2 Xiao Ice QA System
				9.4.2.3 TransferTransfo Conversational Agents
		References
Part II: Natural Language Processing Workshops with Python Implementation in 14 Hours
	Chapter 10: Workshop#1 Basics of Natural Language Toolkit (Hour 1–2)
		10.1 Introduction
		10.2 What Is Natural Language Toolkit (NLTK)?
		10.3 A Simple Text Tokenization Example Using NLTK
		10.4 How to Install NLTK?
		10.5 Why Using Python for NLP?
		10.6 NLTK with Basic Text Processing in NLP
		10.7 Simple Text Analysis with NLTK
		10.8 Text Analysis Using Lexical Dispersion Plot
			10.8.1 What Is a Lexical Dispersion Plot?
			10.8.2 Lexical Dispersion Plot Over Context Using Sense and Sensibility
			10.8.3 Lexical Dispersion Plot Over Time Using Inaugural Address Corpus
		10.9 Tokenization in NLP with NLTK
			10.9.1 What Is Tokenization in NLP?
			10.9.2 Different Between Tokenize() vs Split()
			10.9.3 Count Distinct Tokens
			10.9.4 Lexical Diversity
				10.9.4.1 Token Usage Frequency (Lexical Diversity)
				10.9.4.2 Word Usage Frequency
		10.10 Basic Statistical Tools in NLTK
			10.10.1 Frequency Distribution: FreqDist()
				10.10.1.1 FreqDist() as Dictionary Object
				10.10.1.2 Access FreqDist of Any Token Type
				10.10.1.3 Frequency Distribution Plot from NLTK
			10.10.2 Rare Words: Hapax
			10.10.3 Collocations
				10.10.3.1 What Are Collocations?
				10.10.3.2 Collocations in NLTK
		References
	Chapter 11: Workshop#2 N-grams in NLTK and Tokenization in SpaCy (Hour 3–4)
		11.1 Introduction
		11.2 What Is N-Gram?
		11.3 Applications of N-Grams in NLP
		11.4 Generation of N-Grams in NLTK
		11.5 Generation of N-Grams Statistics
		11.6 spaCy in NLP
			11.6.1 What Is spaCy?
		11.7 How to Install spaCy?
		11.8 Tokenization using spaCy
			11.8.1 Step 1: Import spaCy Module
			11.8.2 Step 2: Load spaCy Module "en_core_web_sm".
			11.8.3 Step 3: Open and Read Text File "Adventures_Holmes.txt" Into file_handler "fholmes"
			11.8.4 Step 4: Read Adventures of Sherlock Holmes
			11.8.5 Step 5: Replace All Newline Symbols
			11.8.6 Step 6: Simple Counting
			11.8.7 Step 7: Invoke nlp() Method in spaCy
			11.8.8 Step 8: Convert Text Document Into Sentence Object
			11.8.9 Step 9: Directly Tokenize Text Document
		References
	Chapter 12: Workshop#3 POS Tagging Using NLTK (Hour 5–6)
		12.1 Introduction
		12.2 A Revisit on Tokenization with NLTK
		12.3 Stemming Using NLTK
			12.3.1 What Is Stemming?
			12.3.2 Why Stemming?
			12.3.3 How to Perform Stemming?
			12.3.4 Porter Stemmer
			12.3.5 Snowball Stemmer
		12.4 Stop-Words Removal with NLTK
			12.4.1 What Are Stop-Words?
			12.4.2 NLTK Stop-Words List
			12.4.3 Try Some Texts
			12.4.4 Create Your Own Stop-Words
				12.4.4.1 Step 1: Create Own Stop-Word Library List
				12.4.4.2 Step 2: Check Object Type and Will See It Has a Simple List
				12.4.4.3 Step 3: Study Stop-Word List
				12.4.4.4 Step 4: Add New Stop-Word "sampleSW" Using Append()
		12.5 Text Analysis with NLTK
		12.6 Integration with WordCloud
			12.6.1 What Is WordCloud?
		12.7 POS Tagging with NLTK
			12.7.1 What Is POS Tagging?
			12.7.2 Universal POS Tagset
			12.7.3 PENN Treebank Tagset (English and Chinese)
			12.7.4 Applications of POS Tagging
		12.8 Create Own POS Tagger with NLTK
		References
	Chapter 13: Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
		13.1 Introduction
		13.2 What Are Word Vectors?
		13.3 Understanding Word Vectors
			13.3.1 Example: A Simple Word Vector
		13.4 A Taste of Word Vectors
		13.5 Analogies and Vector Operations
		13.6 How to Create Word Vectors?
		13.7 spaCy Pre-trained Word Vectors
		13.8 Similarity Method in Semantic Analysis
		13.9 Advanced Semantic Similarity Methods with spaCy
			13.9.1 Understanding Semantic Similarity
			13.9.2 Euclidian Distance
			13.9.3 Cosine Distance and Cosine Similarity
			13.9.4 Categorizing Text with Semantic Similarity
			13.9.5 Extracting Key Phrases
			13.9.6 Extracting and Comparing Named Entities
		References
	Chapter 14: Workshop#5 Sentiment Analysis and Text Classification with LSTM Using spaCy (Hour 9–10)
		14.1 Introduction
		14.2 Text Classification with spaCy and LSTM Technology
		14.3 Technical Requirements
		14.4 Text Classification in a Nutshell
			14.4.1 What Is Text Classification?
			14.4.2 Text Classification as AI Applications
		14.5 Text Classifier with spaCy NLP Pipeline
			14.5.1 TextCategorizer Class
			14.5.2 Formatting Training Data for the TextCategorizer
			14.5.3 System Training
			14.5.4 System Testing
			14.5.5 Training TextCategorizer for Multi-Label Classification
		14.6 Sentiment Analysis with spaCy
			14.6.1 IMDB Large Movie Review Dataset
			14.6.2 Explore the Dataset
			14.6.3 Training the TextClassfier
		14.7 Artificial Neural Network in a Nutshell
		14.8 An Overview of TensorFlow and Keras
		14.9 Sequential Modeling with LSTM Technology
		14.10 Keras Tokenizer in NLP
			14.10.1 Embedding Words
		14.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy
			14.11.1 Step 1: Dataset
			14.11.2 Step 2: Data and Vocabulary Preparation
			14.11.3 Step 3: Implement the Input Layer
			14.11.4 Step 4: Implement the Embedding Layer
			14.11.5 Step 5: Implement the LSTM Layer
			14.11.6 Step 6: Implement the Output Layer
			14.11.7 Step 7: System Compilation
			14.11.8 Step 8: Model Fitting and Experiment Evaluation
		References
	Chapter 15: Workshop#6 Transformers with spaCy and TensorFlow (Hour 11–12)
		15.1 Introduction
		15.2 Technical Requirements
		15.3 Transformers and Transfer Learning in a Nutshell
		15.4 Why Transformers?
		15.5 An Overview of BERT Technology
			15.5.1 What Is BERT?
			15.5.2 BERT Architecture
			15.5.3 BERT Input Format
			15.5.4 How to Train BERT?
		15.6 Transformers with TensorFlow
			15.6.1 HuggingFace Transformers
			15.6.2 Using the BERT Tokenizer
			15.6.3 Word Vectors in BERT
		15.7 Revisit Text Classification Using BERT
			15.7.1 Data Preparation
				15.7.1.1 Import Related Modules
				15.7.1.2 Read emails.csv Datafile
				15.7.1.3 Use dropna() to Remove Record with Missing Contents
			15.7.2 Start the BERT Model Construction
				15.7.2.1 Import BERT Models and Tokenizer
				15.7.2.2 Process Input Data with BertTokenizer
				15.7.2.3 Double Check Databank to See Whether Data Has
				15.7.2.4 Use BERT Tokenizer
				15.7.2.5 Define Keras Model Using the Following Lines
				15.7.2.6 Perform Model Fitting and Use 1 Epoch to Save Time
				15.7.2.7 Review Model Summary
		15.8 Transformer Pipeline Technology
			15.8.1 Transformer Pipeline for Sentiment Analysis
			15.8.2 Transformer Pipeline for QA System
		15.9 Transformer and spaCy
		References
	Chapter 16: Workshop#7 Building Chatbot with TensorFlow and Transformer Technology (Hour 13–14)
		16.1 Introduction
		16.2 Technical Requirements
		16.3 AI Chatbot in a Nutshell
			16.3.1 What Is a Chatbot?
			16.3.2 What Is a Wake Word in Chatbot?
				16.3.2.1 Tailor-Made Wake Word
				16.3.2.2 Why Embedded Word Detection?
			16.3.3 NLP Components in a Chatbot
		16.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology
			16.4.1 The Chatbot Dataset
			16.4.2 Movie Dialog Preprocessing
			16.4.3 Tokenization of Movie Conversation
			16.4.4 Filtering and Padding Process
			16.4.5 Creation of TensorFlow Movie Dataset Object (mDS)
			16.4.6 Calculate Attention Learning Weights
			16.4.7 Multi-Head-Attention (MHAttention)
			16.4.8 System Implementation
				16.4.8.1 Step 1. Implement Masking
				16.4.8.2 Step 2. Implement Positional Encoding
				16.4.8.3 Step 3. Implement Encoder Layer
				16.4.8.4 Step 4. Implement Encoder
				16.4.8.5 Step 5. Implement Decoder Layer
				16.4.8.6 Step 6. Implement Decoder
				16.4.8.7 Step 7. Implement Transformer
				16.4.8.8 Step 8. Model Training
				16.4.8.9 Step 9. Implement Model Evaluation Function
				16.4.8.10 Step 10. Implement Customized Learning Rate
				16.4.8.11 Step 11. Compile Chatbot Model
				16.4.8.12 Step 12. System Training (Model Fitting)
				16.4.8.13 Step 13. System Evaluation and Live Chatting
		16.5 Related Works
		References
Index




نظرات کاربران