دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Alex Thomas
سری:
ISBN (شابک) : 1492047767, 9781492047766
ناشر: O'Reilly UK Ltd.
سال نشر: 2020
تعداد صفحات: 350
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب NATURAL LANGUAGE PROCESSING W/ به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش زبان طبیعی W/ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
می خواهید برنامه ای بسازید که از متن زبان طبیعی استفاده کند، اما مطمئن نیستید از کجا شروع کنید یا از چه ابزاری استفاده کنید؟ این کتاب کاربردی شما را با پردازش زبان طبیعی از اصول اولیه تا تکنیک های مدرن قدرتمند شروع می کند. دانشمندان داده یاد خواهند گرفت که چگونه با استفاده از یادگیری عمیق و چارچوب پردازش توزیع شده Apache Spark، برنامههای NLP با کیفیت سازمانی بسازند.
این راهنما شامل مثالهای عینی، توضیحات عملی و نظری، و تمرینهای عملی برای NLP در Spark است. . خواهید فهمید که چرا این تکنیک ها از دیدگاه یادگیری ماشینی، زبانی و عملی کار می کنند.
این کتاب به شما نشان می دهد که چگونه می توانید:
Want to build an application that uses natural language text, but aren&;t sure where to start or what tools to use? This practical book gets you started with natural language processing from the basics to powerful modern techniques. Data scientists will learn how to build enterprise-quality NLP applications using deep learning and the Apache Spark distributed processing framework.
This guide includes concrete examples, practical and theoretical explanations, and hands-on exercises for NLP on Spark. You&;ll understand why these techniques work from machine learning, linguistic, and practical points of view.
This book shows you how to:
Cover Copyright Table of Contents Preface Why Natural Language Processing Is Important and Difficult Background Philosophy Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments Part I. Basics Chapter 1. Getting Started Introduction Other Tools Setting Up Your Environment Prerequisites Starting Apache Spark Checking Out the Code Getting Familiar with Apache Spark Starting Apache Spark with Spark NLP Loading and Viewing Data in Apache Spark Hello World with Spark NLP Chapter 2. Natural Language Basics What Is Natural Language? Origins of Language Spoken Language Versus Written Language Linguistics Phonetics and Phonology Morphology Syntax Semantics Sociolinguistics: Dialects, Registers, and Other Varieties Formality Context Pragmatics Roman Jakobson How To Use Pragmatics Writing Systems Origins Alphabets Abjads Abugidas Syllabaries Logographs Encodings ASCII Unicode UTF-8 Exercises: Tokenizing Tokenize English Tokenize Greek Tokenize Ge’ez (Amharic) Resources Chapter 3. NLP on Apache Spark Parallelism, Concurrency, Distributing Computation Parallelization Before Apache Hadoop MapReduce and Apache Hadoop Apache Spark Architecture of Apache Spark Physical Architecture Logical Architecture Spark SQL and Spark MLlib Transformers Estimators and Models Evaluators NLP Libraries Functionality Libraries Annotation Libraries NLP in Other Libraries Spark NLP Annotation Library Stages Pretrained Pipelines Finisher Exercises: Build a Topic Model Resources Chapter 4. Deep Learning Basics Gradient Descent Backpropagation Convolutional Neural Networks Filters Pooling Recurrent Neural Networks Backpropagation Through Time Elman Nets LSTMs Exercise 1 Exercise 2 Resources Part II. Building Blocks Chapter 5. Processing Words Tokenization Vocabulary Reduction Stemming Lemmatization Stemming Versus Lemmatization Spelling Correction Normalization Bag-of-Words CountVectorizer N-Gram Visualizing: Word and Document Distributions Exercises Resources Chapter 6. Information Retrieval Inverted Indices Building an Inverted Index Vector Space Model Stop-Word Removal Inverse Document Frequency In Spark Exercises Resources Chapter 7. Classification and Regression Bag-of-Words Features Regular Expression Features Feature Selection Modeling Naïve Bayes Linear Models Decision/Regression Trees Deep Learning Algorithms Iteration Exercises Chapter 8. Sequence Modeling with Keras Sentence Segmentation (Hidden) Markov Models Section Segmentation Part-of-Speech Tagging Conditional Random Field Chunking and Syntactic Parsing Language Models Recurrent Neural Networks Exercise: Character N-Grams Exercise: Word Language Model Resources Chapter 9. Information Extraction Named-Entity Recognition Coreference Resolution Assertion Status Detection Relationship Extraction Summary Exercises Chapter 10. Topic Modeling K-Means Latent Semantic Indexing Nonnegative Matrix Factorization Latent Dirichlet Allocation Exercises Chapter 11. Word Embeddings Word2vec GloVe fastText Transformers ELMo, BERT, and XLNet doc2vec Exercises Part III. Applications Chapter 12. Sentiment Analysis and Emotion Detection Problem Statement and Constraints Plan the Project Design the Solution Implement the Solution Test and Measure the Solution Business Metrics Model-Centric Metrics Infrastructure Metrics Process Metrics Offline Versus Online Model Measurement Review Initial Deployment Fallback Plans Next Steps Conclusion Chapter 13. Building Knowledge Bases Problem Statement and Constraints Plan the Project Design the Solution Implement the Solution Test and Measure the Solution Business Metrics Model-Centric Metrics Infrastructure Metrics Process Metrics Review Conclusion Chapter 14. Search Engine Problem Statement and Constraints Plan the Project Design the Solution Implement the Solution Test and Measure the Solution Business Metrics Model-Centric Metrics Review Conclusion Chapter 15. Chatbot Problem Statement and Constraints Plan the Project Design the Solution Implement the Solution Test and Measure the Solution Business Metrics Model-Centric Metrics Review Conclusion Chapter 16. Object Character Recognition Kinds of OCR Tasks Images of Printed Text and PDFs to Text Images of Handwritten Text to Text Images of Text in Environment to Text Images of Text to Target Note on Different Writing Systems Problem Statement and Constraints Plan the Project Implement the Solution Test and Measure the Solution Model-Centric Metrics Review Conclusion Part IV. Building NLP Systems Chapter 17. Supporting Multiple Languages Language Typology Scenario: Academic Paper Classification Text Processing in Different Languages Compound Words Morphological Complexity Transfer Learning and Multilingual Deep Learning Search Across Languages Checklist Conclusion Chapter 18. Human Labeling Guidelines Scenario: Academic Paper Classification Inter-Labeler Agreement Iterative Labeling Labeling Text Classification Tagging Checklist Conclusion Chapter 19. Productionizing NLP Applications Spark NLP Model Cache Spark NLP and TensorFlow Integration Spark Optimization Basics Design-Level Optimization Profiling Tools Monitoring Managing Data Resources Testing NLP-Based Applications Unit Tests Integration Tests Smoke and Sanity Tests Performance Tests Usability Tests Demoing NLP-Based Applications Checklists Model Deployment Checklist Scaling and Performance Checklist Testing Checklist Conclusion Glossary Index About the Author Colophon