دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gupta R.K. (ed.)
سری:
ISBN (شابک) : 9781032283852
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 424
[425]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 Mb
در صورت تبدیل فایل کتاب Nanowires: Applications, Chemistry, Materials, and Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوسیم ها: کاربردها، شیمی، مواد و فناوری ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این منبع جامع اصول سنتز، خصوصیات، پیشرفت های اخیر و کاربردهای نانوسیم ها را برای بسیاری از کاربردهای نوظهور پوشش می دهد. فصل های اولیه به خواص و مورفولوژی منحصر به فرد آنها می پردازد که امکان تنظیم خواص الکترونیکی، نوری و مکانیکی آنها را فراهم می کند. فصلهای بعدی به چشماندازهای آینده و چالشهای آینده در زمینههایی میپردازند که نانوسیمها میتوانند راهحلهای ممکن را ارائه دهند. همه فصلها توسط متخصصان جهانی نوشته شدهاند و این کتاب درسی مناسب برای دانشآموزان و کتاب راهنمای بهروز برای محققان و متخصصان صنعت که در فیزیک، شیمی، مواد، انرژی، زیستپزشکی و نانوتکنولوژی کار میکنند، تبدیل شده است. مواد، شیمی و فناوریهای نانوسیم را پوشش میدهد. پیشرفت و چالش های پیشرفته در نانوسیم ها را پوشش می دهد. اصول رفتار الکتروشیمیایی دستگاه ها و حسگرهای الکتروشیمیایی مختلف را ارائه می دهد. بینش هایی را در مورد تنظیم خواص نانوسیم ها برای بسیاری از کاربردهای نوظهور ارائه می دهد. جهت و درک جدیدی را برای دانشمندان، محققان و دانشجویان فراهم می کند.
This comprehensive resource covers the fundamentals of synthesis, characterizations, recent progress, and applications of nanowires for many emerging applications. Early chapters address their unique properties and morphology that enable their electronic, optical, and mechanical properties to be tuned. Later chapters address future perspectives and future challenges in areas where nanowires could provide possible solutions. All chapters are written by global experts, making this a suitable textbook for students and an up-to-date handbook for researchers and industry professionals working in physics, chemistry, materials, energy, biomedical, and nanotechnology. Covers materials, chemistry, and technologies for nanowires. Covers the state-of-the-art progress and challenges in nanowires. Provides fundamentals of the electrochemical behavior of various electrochemical devices and sensors. Offers insights on tuning the properties of nanowires for many emerging applications. Provides a new direction and understanding to scientists, researchers, and students.
Cover Half Title Title Page Copyright Page Table of Contents About the Editor Contributors 1 Introduction to Nanowires 1.1 Introduction 1.2 Synthesis of Nanowires 1.3 Applications of Nanowires 1.3.1 Nanowires for Energy Applications 1.3.2 Nanowires for Environmental and Sensing Applications 1.3.3 Nanowires for Biomedical Applications 1.3.4 Other Emerging Applications of Nanowires 1.4 Conclusion and Perspectives References 2 Semiconductor Nanowires 2.1 Introduction 2.2 Growth and Synthesis Methods of SNs 2.2.1 Bottom-Up Approaches 2.2.2 Top-Down Methods 2.3 Application of Semiconductor Nanowires 2.3.1 Gas Sensors 2.3.2 Photocatalysis 2.3.3 Energy 2.3.4 Other Applications 2.4 Future Perspective References 3 Superconducting Nanowires 3.1 Introduction 3.2 Material Production Techniques On Small Scales 3.3 Nanofiber Spinning Techniques 3.3.1 Electrospinning 3.3.2 Solution Blow Spinning 3.4 Applications of Superconducting Nanowires and Nanofiber Mats 3.4.1 Nanofiber Mats 3.4.2 Nanowires 3.5 Summary and Conclusions 3.6 Acknowledgments References 4 Characterization Techniques of Nanowires 4.1 Introduction 4.2 Characterization Techniques for Nanowires 4.2.1 Scanning Electron Microscopy 4.2.2 Transmission Electron Microscopy (TEM) 4.2.3 X-Ray Diffraction 4.2.4 Energy Dispersive X-Ray Spectroscopy 4.2.5 Ultraviolet-Visible Spectroscopy 4.2.6 Atomic Force Microscopy 4.2.7 Nuclear Magnetic Resonance (NMR) 4.2.8 Dynamic Light Scattering (DLS) 4.3 Summary References 5 Nanowires for Metal-Ion Batteries 5.1 Introduction 5.2 Nanocomposites for Metal-Ion Batteries 5.3 Types of MIBs and Their Working Principle 5.3.1 The Energy Storage Mechanism of LIBs 5.3.2 Charge Storage Mechanism in NIBs 5.4 NWs in MIBs 5.4.1 Nanowires in Lithium-Ion Batteries (LIBs) 5.4.2 Nanowires in Sodium-Ion Batteries (SIBs) 5.5 Conclusions References 6 Nanowires for Metal-Air Batteries 6.1 Introduction 6.2 Metal-Air Batteries 6.3 Materials for Metal-Air Batteries 6.4 Nanowires for Metal-Air Batteries 6.4 Conclusion References 7 Nanowires for Metal-Sulfur Batteries 7.1 Introduction 7.2 Overview of Metal-Sulfur Batteries 7.2.1 Working Mechanism of Li-S Batteries 7.2.2 Challenges 7.2.2.1 Insulating Nature of Sulfur and Its Intermediates 7.2.2.2 Volume Expansion 7.2.2.3 Shuttle Effect 7.2.2.4 Lithium Dendrite Growth 7.3 Advantages of Nanowires in Metal-Sulfur Batteries 7.4 Applications of Nanowires in Metal-Sulfur Batteries 7.4.1 Cathodes 7.4.2 Separators and Interlayers 7.4.3 Electrolytes 7.4.4 Anode Protection 7.5 Conclusions and Perspectives Acknowledgments References 8 Nanowires for Electrochemical Energy Storage Applications 8.1 Introduction 8.2 Types of Electrochemical Energy Devices and Their Working Principle 8.2.1 Batteries 8.2.2 Supercapacitors 8.3 Materials and Their Architectural Aspects for Electrochemical Energy Storage 8.4 Methods to Synthesize Nanowires 8.5 Nanowires for Electrochemical Energy Storage 8.5.1 Nanowires for Batteries 8.5.1.1 Lithium-Ion Battery 8.5.1.2 Nanowires as an Anode in LIBs 8.5.1.3 Nanowires as a Cathode in LIBs 8.5.2 Nanowires for Supercapacitors 8.5.2.1 Carbon-Based NWs for EDLCs 8.5.2.3 NWs for Pseudocapacitors 8.5.2.4 NWs for Hybrid Capacitors (HCs) 8.5.3 Nanowire-Based Flexible Electrochemical Energy Devices 8.6 Conclusion and Future Remarks References 9 Nanowires for Supercapacitors 9.1 Introduction 9.2 The Design Principle of Nanowires 9.3 Hydrothermal/Solvothermal Approach 9.4 Sol-Gel Approach 9.5 Co-Precipitation Approach 9.6 Electrodeposition Approach 9.7 Electrospinning Approach 9.8 Chemical Vapor Deposition (CVD) Approach 9.9 Supercapacitors 9.10 Characteristics of Nanowires for Supercapacitors 9.11 Carbon-Based Nanowire Materials in EDLCs 9.12 Pseudocapacitors Based On Nanowire Materials 9.12.1 Pseudocapacitors Based On Metal Oxide NW Materials 9.12.2 Pseudocapacitors With Conductive Polymer NWs 9.13 Hybrid NW Materials for Supercapacitor 9.14 Future Challenges 9.15 Advantages and Disadvantages of Nanowire-Based Materials 9.16 Conclusion References 10 Nanowires for Electrocatalytic Activity 10.1 Introduction 10.2 Oxygen Evolution Reaction (OER) 10.2.1 Nanowires in OER 10.3 Oxygen Reduction Reaction (ORR) 10.3.1 Nanowires for ORR 10.4 Hydrogen Evolution Reaction (HER) 10.4.1 Nanowires in HER 10.5 Alcohol (Methanol, Ethanol) Oxidation Reaction 10.5.1 Nanowires for Alcohol (Methanol, Ethanol) Oxidation Reaction 10.6 Nitrogen Reduction Reaction (NRR) 10.6.1 Nanowires for NRR 10.7 Carbon Dioxide Reduction Reaction (CO2RR) 10.7.1 Nanowires for CO2RR 10.8 Conclusion ReferenceS 11 Nanowires for Fuel Cells 11.1 Introduction 11.2 Overview of Fuel Cells 11.2.1 Fundamental Understanding of Cathodic Reaction in FCs 11.2.2 Fundamental Understanding of Anodic Reaction in FCs 11.2.2.1 AOR 11.2.2.2 HOR 11.2.3 Activity Descriptors for Cathodic and Anodic Reaction 11.2.3.1 The D-Band Center Theory 11.2.3.2 Adsorption Free Energy of Specific Intermediate (ΔGx) 11.2.3.3 Free Energy Diagrams 11.3 Distinct Nanostructures of NWs for Advanced Fuel Cell Catalysis 11.3.1 1D Heterogeneous NWs 11.3.2 1D Core-Shell NWs 11.3.3 1D Ultrathin NWs 11.3.4 1D Defective NWs 11.3.5 1D Networked NWs 11.4 Summary and Outlook References 12 Nanowires for Solar Cells 12.1 Introduction 12.2 Synthesis of Nanowires 12.3 Advantages of Nanowire for Solar Cell Applications 12.3.1 Absorption 12.3.2 Exciton Generation 12.3.3 Charge Separation 12.3.4 Charge Carrier Collection 12.3.5 Cost 12.4 Promising Nanowires for Solar Cell 12.4.1 Silicon Nanowire 12.4.2 Germanium (Ge) Nanowires 12.4.3 Gallium Nitrate (GaN) Nanowires 12.4.4 Zinc Oxide (ZnO) Nanowires 12.5 Conclusions References 13 Nanowires for Photonic Applications 13.1 Introduction 13.2 Synthesis of Nanowires 13.2.1 Vapor-Liquid-Solid Method 13.2.2 Electrodeposition 13.2.3 Nanowire Synthesis By Sol-Gel Technique 13.3 Nanowires for Light-Emitting Diodes 13.4 Nanowires for Subwavelength Waveguides 13.4.1 Dielectric Nanowire Waveguides 13.4.2 Plasmonic Nanowire Waveguides 13.4.3 Hybrid: Dielectric-Plasmonic Nanowire Waveguides 13.5 Nanowires for Optical Sensors 13.5.1 Refractive Index Sensor 13.5.2 Humidity Sensor 13.5.3 Chemical Sensor 13.6 Nanowires for Flexible Photonics 13.7 Conclusion and Future Remarks References 14 Nanowires for Thermoelectrics 14.1 Introduction 14.2 Methods of Synthesis of NWs 14.2.1 Solvothermal Method 14.2.2 Chemical Vapor Deposition 14.2.3 Template Method 14.2.4 Laser Cauterization 14.2.5 Self-Assembly Method 14.2.6 Physical Vapor Deposition 14.3 Development of TE NW Materials 14.4 Development of TE Polymer-Based Nanocomposites With Inorganic NWs 14.5 Structure and Measurement of NWs and NW Devices 14.6 TE Effect of Nanowire Devices 14.7 Development of TE NW Devices 14.8 Conclusions References 15 Nanowires for Piezotronics and Piezo-Phototronics 15.1 Introduction 15.2 Mechanism of Piezotronics and Piezo-Phototronics 15.2.1 Mechanism of Piezotronics 15.2.2 Mechanism of Piezo-Phototronics 15.3 Synthesis of Nanowires 15.3.1 Wet Chemical Approach 15.3.1.1 Hydrothermal Synthesis of Nanowires 15.3.1.2 Electrochemical Deposition 15.3.2 Vapor Deposition Methods 15.3.3 Top to Bottom Method 15.4 Applications of Nanowires for Piezotronics and Piezo-Phototronics 15.4.1 Piezotronics Nanowires for Strain Sensing 15.4.2 Piezotronics Nanowires for Chemical Sensing 15.4.2.1 Nanowires for Gas Sensors 15.4.2.2 Nanowires for Glucose Detection 15.4.2.3 Nanowires for Target Proteins 15.4.3 Piezotronics Nanowires for Humidity Detection 15.4.4 Piezotronics Nanowires for Temperature Sensing 15.4.5 Piezo-PhototronicsNanowires for Photodetectors 15.4.6 Piezo-PhototronicsNanowires in Solar Cells 15.5 Conclusion and Future Remarks References 16 Silver Nanowire-Based Capacitive Type Pressure and Strain Sensors for Human Motion Monitoring 16.1 Introduction 16.2 Synthesis Methods of Silver Nanowires 16.3 Flexible Capacitive Pressure Sensors 16.3.1 Principle of Capacitive Sensing 16.3.2 AgNW-Based Electrode Formation 16.3.2.1 Plain Electrodes 16.3.2.2 Microstructured Electrodes 16.3.2.3 Porous Electrode 16.3.2.4 Yarn-Based Electrode 16.3.2.5 Patterned Electrodes 16.3.3 AgNW-Based Dielectric Formation 16.3.4 Performance of the Pressure Sensors 16.3.4.1 Sensitivity 16.3.4.2 Response Time 16.3.4.3 Dynamic Durability 16.3.4.4 Limit of Detection 16.4 Flexible Capacitive Strain Sensors 16.4.1 Principle of Sensing 16.4.2 AgNW-Based Electrode Formation 16.4.2.1 Plain Electrode 16.4.2.2 Patterned Electrode Arrays 16.4.2.3 Interdigitated Electrodes 16.4.3 Performance of the Strain Sensors 16.4.3.1 Sensitivity 16.4.3.2 Stretchability 16.4.3.3 Linearity 16.4.3.4 Response Time 16.4.3.5 Dynamic Durability 16.4.3.6 Hysteresis 16.5 Human Motion Monitoring Application 16.6 Conclusions References 17 Nanowires for Flexible Electrochemical Energy Devices 17.1 Introduction 17.2 Flexible Nanowires for Energy Storage Devices 17.2.1 Supercapacitors 17.2.2 Lithium-Ion Batteries (LIBs) 17.2.3 Sodium-Ion Batteries (SIBs) 17.2.4 Metal-Air Batteries 17.3 Flexible Nanowire-Based Composite 17.3.1 Carbon Nanowire-Based Composite 17.3.2 Polymer Nanowire-Based Composite 17.3.3 Organic Nanowire-Based Composite 17.3.4 Inorganic Nanowire-Based Composite 17.4 Summary and Outlook References 18 Nanowires for Flexible Electronics 18.1 Introduction 18.2 NWs for Flexible Electronics 18.2.1 Properties of NWs 18.2.2 Different Types of NWs 18.2.2.1 M-NWs 18.2.2.2 Semiconductor and Semiconductor Oxide NWs 18.2.2.3 Perovskite-NWs 18.2.2.4 Organic NWs 18.3 Flexible Substrates 18.4 Applications of NWs for the Flexible Electronics 18.4.1 Transistors 18.4.2 Sensing Applications 18.4.2.1 Flexible Pressure Sensors 18.4.2.2 Flexible Gas Sensors 18.4.3 Touch Screens 18.4.4 Piezoelectric Nanogenerators (PNGs) 18.4.5 Photovoltaic Cells 18.4.6 Flexible Energy Storage Devices 18.5 Conclusion References 19 Nanowires for Heavy Metal Removal 19.1 Introduction 19.2 Nanowires’ Synthesis 19.2.1 Top-Down Approach 19.2.1.1 Lithography 19.2.1.2 Optical Lithography 19.2.1.3 Electron Beam Lithography (EBL) 19.2.1.4 X-Ray Lithography 19.2.2 Bottom-Up Approach 19.2.2.1 Vapor-Liquid-Solid Growth 19.2.2.2 Template-Assisted Synthesis 19.3 Heavy Metal Ion Removal 19.3.1 Toxic Effects and Sources of Contamination of Heavy Metals in Wastewater 19.3.2 Removal Mechanism of Heavy Metal Ions Based On Nanowires (a) Adsorptive Materials (i) Determination of Adsorption Capacity (b) Reuse of Adsorbent (Nanowires) 19.4 Nanowires for Heavy Metal Removal 19.4.1 Iron-Based Nanowires 19.4.2 Tungstate-Based Nanowires 19.4.3 Titanate-Based Nanowires (TiO2) 19.4.4 Manganese Oxide-Based Nanowires (MnO2) 19.4.5 Sodium Vanadate (Na5V12O32) Based Nanowires 19.4.6 Tin-Based Nanowires 19.4.7 Carbon-Based Nanowires 19.5 Conclusions and Future Perspectives Acknowledgments References 20 Nanowires for Organic Waste Removal 20.1 Introduction 20.2 Organic Wastes 20.2.1 Pharmaceutical Waste 20.2.2 Pesticides 20.2.3 Organic Dyes 20.3 Nanomaterial 20.4 Adsorption 20.4.1 Adsorption Kinetics Models 20.4.2 Adsorption Isotherm Models 20.4.3 Iron-Based Nanowires in Adsorption 20.4.4 Copper-Based Nanowires in Adsorption 20.4.5 Manganese-Based Nanowires in Adsorption 20.4.6 Titanate Nanowires in Adsorption 20.4.7 Tungsten Nanowires in Adsorption 20.4.8 Other Nanowires in the Adsorption Process 20.5 Photocatalysis 20.5.1 TiO2 Nanocatalyst in Photocatalysis 20.5.2 ZnO Nanowires in Photocatalysis 20.5.3 SiO2 Nanocatalyst in Photocatalysis 20.5.4 CuO Nanowires in Photocatalysis 20.5.5 Other Nanowires’ Catalyst in Photocatalysis 20.6 Fenton Reaction for Degradation of Organic Pollutants 20.6.1 Iron-Based Nanomaterials in Fenton Reaction 20.6.2 Copper-Based Nanowires in Fenton Reaction 20.6.3 MnO2 Nanowires in Fenton Reaction 20.6.4 ZnO Nanowires in Fenton Reaction 20.7 Conclusion References 21 Nanowires for Gas Sensors 21.1 Introduction 21.2 Metal Oxide Nanowire-Based Gas SEnsors 21.3 Conducting Polymer Nanowire-Based Gas Sensors 21.4 Metallic Nanowire-Based Gas Sensors 21.5 Silicon Nanowire-Based Gas Sensors 21.6 Conclusions References 22 Metal Oxides Wired On Carbon Nanofibers for Sensors to Detect Biomolecules 22.1 Introduction 22.1.1 Flexible Sensors 22.1.2 Nanowires 22.1.3 Fabrication of WA-ECNFs and Surface Functionalization 22.2 Nanowire-Based Sensors and Detection of Biomolecules Using the Hybrid Metal Oxide @ WA-ECNF Sensors 22.3 Summary and Perspectives 22.4 Conclusion References 23 Nanowires for Biosensors 23.1 Introduction 23.2 Classification, Working Principle, and Denaturation and Fabrication Methods 23.2.1 Classification of Nanowire 23.2.2 Working Principle of Nanowire for Biosensor 23.2.3 Nanowire Denaturation and Fabrication Methods 23.3 Application of Nanowire for Biosensor 23.3.1 Nanowire Biosensor for Coronavirus (COVID-19) Detection 23.3.2 Nanowire Biosensor for Agricultural Applications 23.3.3 Nanowire Biosensor for Disease Diagnostics 23.3.4 Nanowire Biosensor for Biomarkers 23.4 Perspective Applications 23.5 Conclusions References 24 Semiconducting WO3 Nanowires for Biomedical Applications 24.1 Introduction 24.1.1 Gas Sensors Based On Metal Oxide NWs 24.1.2 Breath Analysis Through NW Sensors for Disease Diagnosis 24.1.3 Effect of UV-Light Irradiation and Heating Operating Temperature On NW-Based Gas Sensors 24.2 Experimental Procedure 24.2.1 Breath Sampling 24.2.2 Electronic Nose Experimental Set-Up 24.2.2.1 Commercial SnO2 Gas Sensors 24.2.2.2 Elaborated WO3 Nanowire Gas Sensors 24.2.2.3 Data Acquisition System 24.2.2.4 Measurement Process 24.2.3 Data Pre-Processing 24.2.4 Data Analysis 24.3 Results and Discussion 24.3.1 Comparison of the Gas Sensing Performance of SnO2 Thin Film and WO3 Nanowire Sensors 24.3.1.1 WO3 Nanowires and Commercial SnO2 Sensor Responses 24.3.1.2 Beverage Responses of the Sensor Arrays Towards Analyzed Exhaled Breath Samples 24.3.1.3 Discrimination Results By PCA Method 24.3.1.4 Discrimination Results By DFA Method 24.3.2 Optimization of WO3 Nanowire Sensor Operating Temperatures 24.3.3 Doping Effect of the WO3 Nanowire Sensor On Electrical Conduction Properties 24.3.4 Effect of Illumination On the Response of WO3 Sensors Operating at Optimal Temperatures 24.4 Conclusion Acknowledgments References 25 Toxicity and Environmental Impact of Nanowires 25.1 Introduction 25.2 Impact of Nanowires On Terrestrial Ecosystem 25.3 Impact of Nanowires On Aquatic Ecosystem 25.4 Toxic Mechanism of Action of Nanowires 25.5 Conclusion Acknowledgments References 26 Future Perspectives of Nanowires 26.1 Introduction 26.2 Synthesis of Nanowires 26.2.1 Synthesis Techniques for Nanowires 26.2.1.1 Growth of Nanowires in Solution 26.2.1.2 Nanowire Creation in the Gaseous State 26.2.1.3 Top-Down and Bottom-Up Approaches 26.3 Characteristics of Nanowires 26.3.1 Physico-Mechanical Characteristics 26.3.2 Magnetic Properties of Nanowires 26.3.3 Thermal Characteristics 26.3.4 Electrical Characteristics 26.3.5 Optical Properties of Nanowires 26.4 Applications of Nanowires 26.4.1 Use of Nanowires for Thermoelectric Refrigeration 26.4.2 Use of Nanowires in Photovoltaics (PV) Applications 26.4.3 Nanowires for Biological Applications 26.5 Conclusions and Future Scope References Index