ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanowires: Applications, Chemistry, Materials, and Technologies

دانلود کتاب نانوسیم ها: کاربردها، شیمی، مواد و فناوری ها

Nanowires: Applications, Chemistry, Materials, and Technologies

مشخصات کتاب

Nanowires: Applications, Chemistry, Materials, and Technologies

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781032283852 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 424
[425] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nanowires: Applications, Chemistry, Materials, and Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوسیم ها: کاربردها، شیمی، مواد و فناوری ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوسیم ها: کاربردها، شیمی، مواد و فناوری ها

این منبع جامع اصول سنتز، خصوصیات، پیشرفت های اخیر و کاربردهای نانوسیم ها را برای بسیاری از کاربردهای نوظهور پوشش می دهد. فصل های اولیه به خواص و مورفولوژی منحصر به فرد آنها می پردازد که امکان تنظیم خواص الکترونیکی، نوری و مکانیکی آنها را فراهم می کند. فصل‌های بعدی به چشم‌اندازهای آینده و چالش‌های آینده در زمینه‌هایی می‌پردازند که نانوسیم‌ها می‌توانند راه‌حل‌های ممکن را ارائه دهند. همه فصل‌ها توسط متخصصان جهانی نوشته شده‌اند و این کتاب درسی مناسب برای دانش‌آموزان و کتاب راهنمای به‌روز برای محققان و متخصصان صنعت که در فیزیک، شیمی، مواد، انرژی، زیست‌پزشکی و نانوتکنولوژی کار می‌کنند، تبدیل شده است. مواد، شیمی و فناوری‌های نانوسیم را پوشش می‌دهد. پیشرفت و چالش های پیشرفته در نانوسیم ها را پوشش می دهد. اصول رفتار الکتروشیمیایی دستگاه ها و حسگرهای الکتروشیمیایی مختلف را ارائه می دهد. بینش هایی را در مورد تنظیم خواص نانوسیم ها برای بسیاری از کاربردهای نوظهور ارائه می دهد. جهت و درک جدیدی را برای دانشمندان، محققان و دانشجویان فراهم می کند.


توضیحاتی درمورد کتاب به خارجی

This comprehensive resource covers the fundamentals of synthesis, characterizations, recent progress, and applications of nanowires for many emerging applications. Early chapters address their unique properties and morphology that enable their electronic, optical, and mechanical properties to be tuned. Later chapters address future perspectives and future challenges in areas where nanowires could provide possible solutions. All chapters are written by global experts, making this a suitable textbook for students and an up-to-date handbook for researchers and industry professionals working in physics, chemistry, materials, energy, biomedical, and nanotechnology. Covers materials, chemistry, and technologies for nanowires. Covers the state-of-the-art progress and challenges in nanowires. Provides fundamentals of the electrochemical behavior of various electrochemical devices and sensors. Offers insights on tuning the properties of nanowires for many emerging applications. Provides a new direction and understanding to scientists, researchers, and students.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
About the Editor
Contributors
1 Introduction to Nanowires
	1.1 Introduction
	1.2 Synthesis of Nanowires
	1.3 Applications of Nanowires
		1.3.1 Nanowires for Energy Applications
		1.3.2 Nanowires for Environmental and Sensing Applications
		1.3.3 Nanowires for Biomedical Applications
		1.3.4 Other Emerging Applications of Nanowires
	1.4 Conclusion and Perspectives
	References
2 Semiconductor Nanowires
	2.1 Introduction
	2.2 Growth and Synthesis Methods of SNs
		2.2.1 Bottom-Up Approaches
		2.2.2 Top-Down Methods
	2.3 Application of Semiconductor Nanowires
		2.3.1 Gas Sensors
		2.3.2 Photocatalysis
		2.3.3 Energy
		2.3.4 Other Applications
	2.4 Future Perspective
	References
3 Superconducting Nanowires
	3.1 Introduction
	3.2 Material Production Techniques On Small Scales
	3.3 Nanofiber Spinning Techniques
		3.3.1 Electrospinning
		3.3.2 Solution Blow Spinning
	3.4 Applications of Superconducting Nanowires and Nanofiber Mats
		3.4.1 Nanofiber Mats
		3.4.2 Nanowires
	3.5 Summary and Conclusions
	3.6 Acknowledgments
	References
4 Characterization Techniques of Nanowires
	4.1 Introduction
	4.2 Characterization Techniques for Nanowires
		4.2.1 Scanning Electron Microscopy
		4.2.2 Transmission Electron Microscopy (TEM)
		4.2.3 X-Ray Diffraction
		4.2.4 Energy Dispersive X-Ray Spectroscopy
		4.2.5 Ultraviolet-Visible Spectroscopy
		4.2.6 Atomic Force Microscopy
		4.2.7 Nuclear Magnetic Resonance (NMR)
		4.2.8 Dynamic Light Scattering (DLS)
	4.3 Summary
	References
5 Nanowires for Metal-Ion Batteries
	5.1 Introduction
	5.2 Nanocomposites for Metal-Ion Batteries
	5.3 Types of MIBs and Their Working Principle
		5.3.1 The Energy Storage Mechanism of LIBs
		5.3.2 Charge Storage Mechanism in NIBs
	5.4 NWs in MIBs
		5.4.1 Nanowires in Lithium-Ion Batteries (LIBs)
		5.4.2 Nanowires in Sodium-Ion Batteries (SIBs)
	5.5 Conclusions
	References
6 Nanowires for Metal-Air Batteries
	6.1 Introduction
	6.2 Metal-Air Batteries
	6.3 Materials for Metal-Air Batteries
	6.4 Nanowires for Metal-Air Batteries
	6.4 Conclusion
	References
7 Nanowires for Metal-Sulfur Batteries
	7.1 Introduction
	7.2 Overview of Metal-Sulfur Batteries
		7.2.1 Working Mechanism of Li-S Batteries
		7.2.2 Challenges
			7.2.2.1 Insulating Nature of Sulfur and Its Intermediates
			7.2.2.2 Volume Expansion
			7.2.2.3 Shuttle Effect
			7.2.2.4 Lithium Dendrite Growth
	7.3 Advantages of Nanowires in Metal-Sulfur Batteries
	7.4 Applications of Nanowires in Metal-Sulfur Batteries
		7.4.1 Cathodes
		7.4.2 Separators and Interlayers
		7.4.3 Electrolytes
		7.4.4 Anode Protection
	7.5 Conclusions and Perspectives
	Acknowledgments
	References
8 Nanowires for Electrochemical Energy Storage Applications
	8.1 Introduction
	8.2 Types of Electrochemical Energy Devices and Their Working Principle
		8.2.1 Batteries
		8.2.2 Supercapacitors
	8.3 Materials and Their Architectural Aspects for Electrochemical Energy Storage
	8.4 Methods to Synthesize Nanowires
	8.5 Nanowires for Electrochemical Energy Storage
		8.5.1 Nanowires for Batteries
			8.5.1.1 Lithium-Ion Battery
			8.5.1.2 Nanowires as an Anode in LIBs
			8.5.1.3 Nanowires as a Cathode in LIBs
		8.5.2 Nanowires for Supercapacitors
			8.5.2.1 Carbon-Based NWs for EDLCs
			8.5.2.3 NWs for Pseudocapacitors
			8.5.2.4 NWs for Hybrid Capacitors (HCs)
		8.5.3 Nanowire-Based Flexible Electrochemical Energy Devices
	8.6 Conclusion and Future Remarks
	References
9 Nanowires for Supercapacitors
	9.1 Introduction
	9.2 The Design Principle of Nanowires
	9.3 Hydrothermal/Solvothermal Approach
	9.4 Sol-Gel Approach
	9.5 Co-Precipitation Approach
	9.6 Electrodeposition Approach
	9.7 Electrospinning Approach
	9.8 Chemical Vapor Deposition (CVD) Approach
	9.9 Supercapacitors
	9.10 Characteristics of Nanowires for Supercapacitors
	9.11 Carbon-Based Nanowire Materials in EDLCs
	9.12 Pseudocapacitors Based On Nanowire Materials
		9.12.1 Pseudocapacitors Based On Metal Oxide NW Materials
		9.12.2 Pseudocapacitors With Conductive Polymer NWs
	9.13 Hybrid NW Materials for Supercapacitor
	9.14 Future Challenges
	9.15 Advantages and Disadvantages of Nanowire-Based Materials
	9.16 Conclusion
	References
10 Nanowires for Electrocatalytic Activity
	10.1 Introduction
	10.2 Oxygen Evolution Reaction (OER)
		10.2.1 Nanowires in OER
	10.3 Oxygen Reduction Reaction (ORR)
		10.3.1 Nanowires for ORR
	10.4 Hydrogen Evolution Reaction (HER)
		10.4.1 Nanowires in HER
	10.5 Alcohol (Methanol, Ethanol) Oxidation Reaction
		10.5.1 Nanowires for Alcohol (Methanol, Ethanol) Oxidation Reaction
	10.6 Nitrogen Reduction Reaction (NRR)
		10.6.1 Nanowires for NRR
	10.7 Carbon Dioxide Reduction Reaction (CO2RR)
		10.7.1 Nanowires for CO2RR
	10.8 Conclusion
	ReferenceS
11 Nanowires for Fuel Cells
	11.1 Introduction
	11.2 Overview of Fuel Cells
		11.2.1 Fundamental Understanding of Cathodic Reaction in FCs
		11.2.2 Fundamental Understanding of Anodic Reaction in FCs
			11.2.2.1 AOR
			11.2.2.2 HOR
		11.2.3 Activity Descriptors for Cathodic and Anodic Reaction
			11.2.3.1 The D-Band Center Theory
			11.2.3.2 Adsorption Free Energy of Specific Intermediate (ΔGx)
			11.2.3.3 Free Energy Diagrams
	11.3 Distinct Nanostructures of NWs for Advanced Fuel Cell Catalysis
		11.3.1 1D Heterogeneous NWs
		11.3.2 1D Core-Shell NWs
		11.3.3 1D Ultrathin NWs
		11.3.4 1D Defective NWs
		11.3.5 1D Networked NWs
	11.4 Summary and Outlook
	References
12 Nanowires for Solar Cells
	12.1 Introduction
	12.2 Synthesis of Nanowires
	12.3 Advantages of Nanowire for Solar Cell Applications
		12.3.1 Absorption
		12.3.2 Exciton Generation
		12.3.3 Charge Separation
		12.3.4 Charge Carrier Collection
		12.3.5 Cost
	12.4 Promising Nanowires for Solar Cell
		12.4.1 Silicon Nanowire
		12.4.2 Germanium (Ge) Nanowires
		12.4.3 Gallium Nitrate (GaN) Nanowires
		12.4.4 Zinc Oxide (ZnO) Nanowires
	12.5 Conclusions
	References
13 Nanowires for Photonic Applications
	13.1 Introduction
	13.2 Synthesis of Nanowires
		13.2.1 Vapor-Liquid-Solid Method
		13.2.2 Electrodeposition
		13.2.3 Nanowire Synthesis By Sol-Gel Technique
	13.3 Nanowires for Light-Emitting Diodes
	13.4 Nanowires for Subwavelength Waveguides
		13.4.1 Dielectric Nanowire Waveguides
		13.4.2 Plasmonic Nanowire Waveguides
		13.4.3 Hybrid: Dielectric-Plasmonic Nanowire Waveguides
	13.5 Nanowires for Optical Sensors
		13.5.1 Refractive Index Sensor
		13.5.2 Humidity Sensor
		13.5.3 Chemical Sensor
	13.6 Nanowires for Flexible Photonics
	13.7 Conclusion and Future Remarks
	References
14 Nanowires for Thermoelectrics
	14.1 Introduction
	14.2 Methods of Synthesis of NWs
		14.2.1 Solvothermal Method
		14.2.2 Chemical Vapor Deposition
		14.2.3 Template Method
		14.2.4 Laser Cauterization
		14.2.5 Self-Assembly Method
		14.2.6 Physical Vapor Deposition
	14.3 Development of TE NW Materials
	14.4 Development of TE Polymer-Based Nanocomposites With Inorganic NWs
	14.5 Structure and Measurement of NWs and NW Devices
	14.6 TE Effect of Nanowire Devices
	14.7 Development of TE NW Devices
	14.8 Conclusions
	References
15 Nanowires for Piezotronics and Piezo-Phototronics
	15.1 Introduction
	15.2 Mechanism of Piezotronics and Piezo-Phototronics
		15.2.1 Mechanism of Piezotronics
		15.2.2 Mechanism of Piezo-Phototronics
	15.3 Synthesis of Nanowires
		15.3.1 Wet Chemical Approach
			15.3.1.1 Hydrothermal Synthesis of Nanowires
			15.3.1.2 Electrochemical Deposition
		15.3.2 Vapor Deposition Methods
		15.3.3 Top to Bottom Method
	15.4 Applications of Nanowires for Piezotronics and Piezo-Phototronics
		15.4.1 Piezotronics Nanowires for Strain Sensing
		15.4.2 Piezotronics Nanowires for Chemical Sensing
			15.4.2.1 Nanowires for Gas Sensors
			15.4.2.2 Nanowires for Glucose Detection
			15.4.2.3 Nanowires for Target Proteins
		15.4.3 Piezotronics Nanowires for Humidity Detection
		15.4.4 Piezotronics Nanowires for Temperature Sensing
		15.4.5 Piezo-PhototronicsNanowires for Photodetectors
		15.4.6 Piezo-PhototronicsNanowires in Solar Cells
	15.5 Conclusion and Future Remarks
	References
16 Silver Nanowire-Based Capacitive Type Pressure and Strain Sensors for Human Motion Monitoring
	16.1 Introduction
	16.2 Synthesis Methods of Silver Nanowires
	16.3 Flexible Capacitive Pressure Sensors
		16.3.1 Principle of Capacitive Sensing
		16.3.2 AgNW-Based Electrode Formation
			16.3.2.1 Plain Electrodes
			16.3.2.2 Microstructured Electrodes
			16.3.2.3 Porous Electrode
			16.3.2.4 Yarn-Based Electrode
			16.3.2.5 Patterned Electrodes
		16.3.3 AgNW-Based Dielectric Formation
		16.3.4 Performance of the Pressure Sensors
			16.3.4.1 Sensitivity
			16.3.4.2 Response Time
			16.3.4.3 Dynamic Durability
			16.3.4.4 Limit of Detection
	16.4 Flexible Capacitive Strain Sensors
		16.4.1 Principle of Sensing
		16.4.2 AgNW-Based Electrode Formation
			16.4.2.1 Plain Electrode
			16.4.2.2 Patterned Electrode Arrays
			16.4.2.3 Interdigitated Electrodes
		16.4.3 Performance of the Strain Sensors
			16.4.3.1 Sensitivity
			16.4.3.2 Stretchability
			16.4.3.3 Linearity
			16.4.3.4 Response Time
			16.4.3.5 Dynamic Durability
			16.4.3.6 Hysteresis
	16.5 Human Motion Monitoring Application
	16.6 Conclusions
	References
17 Nanowires for Flexible Electrochemical Energy Devices
	17.1 Introduction
	17.2 Flexible Nanowires for Energy Storage Devices
		17.2.1 Supercapacitors
		17.2.2 Lithium-Ion Batteries (LIBs)
		17.2.3 Sodium-Ion Batteries (SIBs)
		17.2.4 Metal-Air Batteries
	17.3 Flexible Nanowire-Based Composite
		17.3.1 Carbon Nanowire-Based Composite
		17.3.2 Polymer Nanowire-Based Composite
		17.3.3 Organic Nanowire-Based Composite
		17.3.4 Inorganic Nanowire-Based Composite
	17.4 Summary and Outlook
	References
18 Nanowires for Flexible Electronics
	18.1 Introduction
	18.2 NWs for Flexible Electronics
		18.2.1 Properties of NWs
		18.2.2 Different Types of NWs
			18.2.2.1 M-NWs
			18.2.2.2 Semiconductor and Semiconductor Oxide NWs
			18.2.2.3 Perovskite-NWs
			18.2.2.4 Organic NWs
	18.3 Flexible Substrates
	18.4 Applications of NWs for the Flexible Electronics
		18.4.1 Transistors
		18.4.2 Sensing Applications
			18.4.2.1 Flexible Pressure Sensors
			18.4.2.2 Flexible Gas Sensors
		18.4.3 Touch Screens
		18.4.4 Piezoelectric Nanogenerators (PNGs)
		18.4.5 Photovoltaic Cells
		18.4.6 Flexible Energy Storage Devices
	18.5 Conclusion
	References
19 Nanowires for Heavy Metal Removal
	19.1 Introduction
	19.2 Nanowires’ Synthesis
		19.2.1 Top-Down Approach
			19.2.1.1 Lithography
			19.2.1.2 Optical Lithography
			19.2.1.3 Electron Beam Lithography (EBL)
			19.2.1.4 X-Ray Lithography
		19.2.2 Bottom-Up Approach
			19.2.2.1 Vapor-Liquid-Solid Growth
			19.2.2.2 Template-Assisted Synthesis
	19.3 Heavy Metal Ion Removal
		19.3.1 Toxic Effects and Sources of Contamination of Heavy Metals in Wastewater
		19.3.2 Removal Mechanism of Heavy Metal Ions Based On Nanowires
			(a) Adsorptive Materials
			(i) Determination of Adsorption Capacity
			(b) Reuse of Adsorbent (Nanowires)
	19.4 Nanowires for Heavy Metal Removal
		19.4.1 Iron-Based Nanowires
		19.4.2 Tungstate-Based Nanowires
		19.4.3 Titanate-Based Nanowires (TiO2)
		19.4.4 Manganese Oxide-Based Nanowires (MnO2)
		19.4.5 Sodium Vanadate (Na5V12O32) Based Nanowires
		19.4.6 Tin-Based Nanowires
		19.4.7 Carbon-Based Nanowires
	19.5 Conclusions and Future Perspectives
	Acknowledgments
	References
20 Nanowires for Organic Waste Removal
	20.1 Introduction
	20.2 Organic Wastes
		20.2.1 Pharmaceutical Waste
		20.2.2 Pesticides
		20.2.3 Organic Dyes
	20.3 Nanomaterial
	20.4 Adsorption
		20.4.1 Adsorption Kinetics Models
		20.4.2 Adsorption Isotherm Models
		20.4.3 Iron-Based Nanowires in Adsorption
		20.4.4 Copper-Based Nanowires in Adsorption
		20.4.5 Manganese-Based Nanowires in Adsorption
		20.4.6 Titanate Nanowires in Adsorption
		20.4.7 Tungsten Nanowires in Adsorption
		20.4.8 Other Nanowires in the Adsorption Process
	20.5 Photocatalysis
		20.5.1 TiO2 Nanocatalyst in Photocatalysis
		20.5.2 ZnO Nanowires in Photocatalysis
		20.5.3 SiO2 Nanocatalyst in Photocatalysis
		20.5.4 CuO Nanowires in Photocatalysis
		20.5.5 Other Nanowires’ Catalyst in Photocatalysis
	20.6 Fenton Reaction for Degradation of Organic Pollutants
		20.6.1 Iron-Based Nanomaterials in Fenton Reaction
		20.6.2 Copper-Based Nanowires in Fenton Reaction
		20.6.3 MnO2 Nanowires in Fenton Reaction
		20.6.4 ZnO Nanowires in Fenton Reaction
	20.7 Conclusion
	References
21 Nanowires for Gas Sensors
	21.1 Introduction
	21.2 Metal Oxide Nanowire-Based Gas SEnsors
	21.3 Conducting Polymer Nanowire-Based Gas Sensors
	21.4 Metallic Nanowire-Based Gas Sensors
	21.5 Silicon Nanowire-Based Gas Sensors
	21.6 Conclusions
	References
22 Metal Oxides Wired On Carbon Nanofibers for Sensors to Detect Biomolecules
	22.1 Introduction
		22.1.1 Flexible Sensors
		22.1.2 Nanowires
		22.1.3 Fabrication of WA-ECNFs and Surface Functionalization
	22.2 Nanowire-Based Sensors and Detection of Biomolecules Using the Hybrid Metal Oxide @ WA-ECNF Sensors
	22.3 Summary and Perspectives
	22.4 Conclusion
	References
23 Nanowires for Biosensors
	23.1 Introduction
	23.2 Classification, Working Principle, and Denaturation and Fabrication Methods
		23.2.1 Classification of Nanowire
		23.2.2 Working Principle of Nanowire for Biosensor
		23.2.3 Nanowire Denaturation and Fabrication Methods
	23.3 Application of Nanowire for Biosensor
		23.3.1 Nanowire Biosensor for Coronavirus (COVID-19) Detection
		23.3.2 Nanowire Biosensor for Agricultural Applications
		23.3.3 Nanowire Biosensor for Disease Diagnostics
		23.3.4 Nanowire Biosensor for Biomarkers
	23.4 Perspective Applications
	23.5 Conclusions
	References
24 Semiconducting WO3 Nanowires for Biomedical Applications
	24.1 Introduction
		24.1.1 Gas Sensors Based On Metal Oxide NWs
		24.1.2 Breath Analysis Through NW Sensors for Disease Diagnosis
		24.1.3 Effect of UV-Light Irradiation and Heating Operating Temperature On NW-Based Gas Sensors
	24.2 Experimental Procedure
		24.2.1 Breath Sampling
		24.2.2 Electronic Nose Experimental Set-Up
			24.2.2.1 Commercial SnO2 Gas Sensors
			24.2.2.2 Elaborated WO3 Nanowire Gas Sensors
			24.2.2.3 Data Acquisition System
			24.2.2.4 Measurement Process
	24.2.3 Data Pre-Processing
		24.2.4 Data Analysis
	24.3 Results and Discussion
		24.3.1 Comparison of the Gas Sensing Performance of SnO2 Thin Film and WO3 Nanowire Sensors
			24.3.1.1 WO3 Nanowires and Commercial SnO2 Sensor Responses
			24.3.1.2 Beverage Responses of the Sensor Arrays Towards Analyzed Exhaled Breath Samples
			24.3.1.3 Discrimination Results By PCA Method
			24.3.1.4 Discrimination Results By DFA Method
		24.3.2 Optimization of WO3 Nanowire Sensor Operating Temperatures
		24.3.3 Doping Effect of the WO3 Nanowire Sensor On Electrical Conduction Properties
		24.3.4 Effect of Illumination On the Response of WO3 Sensors Operating at Optimal Temperatures
	24.4 Conclusion
	Acknowledgments
	References
25 Toxicity and Environmental Impact of Nanowires
	25.1 Introduction
	25.2 Impact of Nanowires On Terrestrial Ecosystem
	25.3 Impact of Nanowires On Aquatic Ecosystem
	25.4 Toxic Mechanism of Action of Nanowires
	25.5 Conclusion
	Acknowledgments
	References
26 Future Perspectives of Nanowires
	26.1 Introduction
	26.2 Synthesis of Nanowires
		26.2.1 Synthesis Techniques for Nanowires
			26.2.1.1 Growth of Nanowires in Solution
			26.2.1.2 Nanowire Creation in the Gaseous State
			26.2.1.3 Top-Down and Bottom-Up Approaches
	26.3 Characteristics of Nanowires
		26.3.1 Physico-Mechanical Characteristics
		26.3.2 Magnetic Properties of Nanowires
		26.3.3 Thermal Characteristics
		26.3.4 Electrical Characteristics
		26.3.5 Optical Properties of Nanowires
	26.4 Applications of Nanowires
		26.4.1 Use of Nanowires for Thermoelectric Refrigeration
		26.4.2 Use of Nanowires in Photovoltaics (PV) Applications
		26.4.3 Nanowires for Biological Applications
	26.5 Conclusions and Future Scope
	References
Index




نظرات کاربران