دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آنکولوژی ویرایش: نویسندگان: Hardeep Singh Tuli سری: ISBN (شابک) : 9814968412, 9789814968416 ناشر: Jenny Stanford Publishing سال نشر: 2022 تعداد صفحات: 279 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Nanotherapeutics in Cancer: Materials, Diagnostics, and Clinical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانودرمان در سرطان: مواد، تشخیص و کاربردهای بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Chapter 1: Introduction to Nanotherapeutics: A Synthetic Preview 1.1: Introduction 1.2: Designing Nanoparticles for Therapeutics 1.3: Types of Nanoformulations 1.3.1: Polymeric Nanoparticles 1.3.1.1: Nanosponges 1.3.1.2: Dendrimers 1.3.1.3: Nanocapsules 1.3.1.4: Nanogels 1.3.2: Lipid-Based Nanoparticles 1.3.2.1: Nanoemulsions 1.3.2.2: Solid lipid nanoparticles 1.3.2.3: Nanostructured lipid carriers 1.3.3: Non-polymeric Nanoparticles 1.3.3.1: Carbon nanotubes 1.3.3.2: Nanodiamonds 1.3.3.3: Metallic nanoparticles 1.3.3.4: Quantum dots 1.3.3.5: Silica-based nanoparticles 1.4: Targeted Delivery Applications of Therapeutic Nanoparticles 1.5: Limitations and Disadvantages of Therapeutic Nanoparticles 1.6: Conclusion Chapter 2: Synthesis, Characterization, and Application of Metal Oxide Nanoparticles 2.1: Introduction 2.2: Techniques for Synthesis of Nanoparticles 2.2.1: Top-Down Approach 2.2.1.1: Physical method 2.2.1.2: Physical vapor deposition 2.2.1.3: Sputtering 2.2.1.4: Laser ablation 2.2.1.5: Pulsed laser deposition 2.2.1.6: Ball milling 2.2.2: Bottom-Up Approach 2.2.2.1: Chemical methods 2.2.2.2: Sol–gel process 2.2.2.3: Chemical vapor deposition 2.2.2.4: Chemical precipitation method 2.2.2.5: Sonochemical method 2.2.2.6: Hydrothermal synthesis 2.2.2.7: Polyol synthesis 2.3: Characterization Techniques 2.3.1: X-ray Diffraction 2.3.2: Transmission Electron Microscopy 2.3.3: Fourier Transform Infrared Spectroscopy 2.3.4: UV–Visible Absorption Spectroscopy 2.3.5: NMR Spectroscopy 2.3.6: Thermal Analysis 2.3.7: Scanning Electron Microscope 2.3.8: Energy-Dispersive X-ray Analysis 2.3.9: Selected Area Electron Diffraction 2.3.10: Energy-Dispersive X-ray Spectroscopy 2.3.11: X-ray Photoelectron Spectroscopy 2.3.12: Differential Scanning Calorimetry 2.3.13: Photoluminescence Spectroscopy Chapter 3: Current Scenario of Nanomaterials in Cancer Diagnostics 3.1: Introduction 3.2: Advantages of Using Nanomaterials in Cancer Therapy 3.3: Nanomaterials Used for Cancer Diagnostics 3.3.1: Liposomes 3.3.2: Dendrimers 3.3.3: Polymeric Nanoparticles 3.3.4: Polymeric Micelles 3.3.5: Polymer Drug Conjugates 3.3.6: Gold Nanoparticles 3.3.7: Magnetic Nanoparticles 3.3.8: Silica Nanoparticles 3.3.9: Quantum Dots 3.3.10: Carbon Nanotubes 3.3.11: Nanographene 3.4: Cytotoxicity Caused by Nanoparticles 3.5: Conclusion Chapter 4: Emerging Antineoplastic Potential of Nanoparticles Against Different Types of Cancer 4.1: Introduction 4.2: Nanotherapeutics in Diverse Range of Cancer 4.2.1: Role of Nanoparticles in Brain Cancer 4.2.2: Role of Nanoparticles in Head and Neck Cancer 4.2.3: Role of Nanoparticles in Breast Cancer 4.2.4: Role of Nanoparticles in Gastric Cancer 4.2.5: Role of Nanoparticles in Lung Cancer 4.2.6: Role of Nanoparticles in Pancreatic Cancer 4.2.7: Role of Nanoparticles in Ovarian Cancer 4.2.8: Role of Nanoparticles in Prostate Cancer 4.3: Conclusion and Future Perspectives Chapter 5: Nanomaterials-Mediated Oxidative Stress in Cancer: Recent Trends and Future Perspectives 5.1: Introduction 5.2: Molecular Mechanisms of Oxidative Stress in Carcinogenesis 5.3: Mechanism of Nanomaterials-Mediated ROS Generation 5.4: Metal-Based Nanoparticles-Mediated ROS Generation 5.5: Carbon-Based Nanomaterials-Mediated ROS Generation 5.6: Nanovehicles in ROS-Mediated Cancer Therapy 5.7: Concluding Remarks and Future Prospects Chapter 6: Role of Nanotherapeutics in Inhibiting Cancer Angiogenesis: A Novel Perspective 6.1: Introduction 6.2: Angiogenesis: A Critical Hallmark in Cancer 6.3: Antiangiogenic Nanotherapy 6.3.1: Metal and Metallic Oxide NPs 6.3.1.1: Gold NPs 6.3.1.2: Silver NPs 6.3.1.3: Copper NPs 6.3.2: Non-metallic NPs 6.3.3: Polymer-Based NPs 6.3.4: Tertac NPs 6.3.5: Peptide NPs 6.3.6: Carbon-Based Nanomaterials 6.4: Nanotechnology and Gene Therapy in Cancer 6.5: Current Approved Nanotherapies for Cancer Treatment 6.6: Conclusion and Future Perspectives Chapter 7: Inhibition of Cancer Cell Metastasis by Nanotherapeutics: Current Achievements and Future Trends 7.1: Introduction 7.2: Impact of Nanocarriers Physicochemical Properties in Tumor Inhibition 7.2.1: Nanoparticles Size and Morphology 7.2.2: Nanoparticle Surface Charge 7.2.3: Nanoparticle Surface Chemistry 7.3: Nanomedicine-Based Strategies for Inhibition of Tumor Metastasis 7.3.1: Active Targeting 7.3.2: Passive Targeting 7.3.3: Cancer Stem Cells Targeting 7.3.4: Epithelial–Mesenchymal Transition Targeting 7.3.5: Remodeling Tumor Microenvironment 7.3.6: Circulating Tumor Cell Targeting 7.3.7: Gene Editing 7.4: Experiences from Clinical Trials 7.5: Conclusion and Future Perspectives Chapter 8: Nanotherapeutics as Potential Carriers for the Delivery of Anticancer Drugs 8.1: Introduction 8.2: Various Nanotherapeutics Used for the Delivery of Anticancer Drugs 8.2.1: Delivery of Baicalin and 5-Fluorouracil Using Polyamidoamine Dendrimers 8.2.2: Delivery of Hydroxycamptothecin and Doxorubicin Using Biodegradable Dendrimers 8.2.3: Delivery of Trastuzumab and Doxorubicin Using Amino Acid–Based Dendrimers 8.2.4: Delivery of Cytarabine and Fludarabine Using Glycodendrimers 8.2.5: Delivery of Paclitaxel and Doxorubicin Using Hydrophobic Dendrimers 8.2.6: Delivery of Biotin-SB-T-1214 Taxoid and mAb Using Asymmetric Dendrimers 8.2.7: Delivery of Hesperidin and Fluorodeoxyuridine Using Targeted Liposomal Approach 8.2.8: Delivery of Silibinin and Gemcitabine Using Thermosensitivity-Based Liposomes 8.2.9: Delivery of siRNA and Antisense Agent Using Enzyme-Sensitive Liposomes 8.2.10: Delivery of Apigenin and Piplartine Using Nanoemulsions 8.2.11: Delivery of Quercetin and Raloxifene Using Chitosan Nanoparticles 8.2.12: Delivery of Curcumin and Docetaxel Using Silica Nanoparticles 8.2.13: Delivery of Kaempferol and Docetaxel Using PLGA Nanoparticles 8.3: Effect of Nanoformulations to Stabilize Therapeutic Agent 8.4: Conclusion and Future Perspectives Chapter 9: Nanoparticle-Associated Toxicity and Concept of Edible Nanoparticles: Promising Therapeutics in Near Future 9.1: Introduction 9.2: Nanoparticle-Associated Toxicity 9.3: Plant-Derived Extracellular Vesicles as Vehicles for Delivery of Therapeutic Agents 9.3.1: Composition of Plant-Derived Extracellular Vesicles and Their Biological Action 9.3.2: Isolation of Plant-Derived Edible Nanoparticles 9.4: Therapeutic Applications of Plant-Derived Edible Nanoparticles 9.5: Discussion 9.6: Conclusion and Future Perspectives Index