دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Haiyan Xu (editor). Ning Gu (editor)
سری:
ISBN (شابک) : 9811553858, 9789811553851
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 482
[490]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Nanotechnology in Regenerative Medicine and Drug Delivery Therapy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری نانو در پزشکی احیا و درمان دارویی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی کاربرد فناوریهای نانو در بازسازی بافت هدایتشونده داربست و در سیستمهای تحویل دارو برای استفاده در ایمونوتراپی و غلبه بر مقاومت دارویی در درمان سرطان تمرکز دارد. موضوعات مختلفی از جمله نانومواد برای تعدیل ایمنی و ایمونوتراپی را پوشش می دهد. مطالعات مولکولی در مورد خودآرایی برای پپتیدها و DNA و کاربردهای مرتبط در تشخیص و درمان تومور و علیه باکتریهای بیماریزای انسانی. داربست های مغناطیسی و رسانا برای هدایت بازسازی بافت؛ عملکردهای چندگانه نانوذرات مغناطیسی در دارورسانی و پزشکی احیا کننده؛ و استفاده مجدد از طب سنتی در فرمولاسیون نانو. علاوه بر این، اثرات رایج نانومواد، از جمله گونههای فعال اکسیژن و پروتئین تاج را مورد بحث قرار میدهد. این کتاب با ارائه بینش های ارزشمند و ارائه آخرین پیشرفت های تحقیقاتی، به خوانندگان اجازه می دهد تا درک سیستماتیک از موضوع را به دست آورند.
The book focuses on the application of nanotechnologies in scaffold-guided tissue regeneration and in drug delivery systems for use in immunotherapy and overcoming drug resistance in cancer treatment. It covers a variety of topics, including nanomaterials for immunomodulation and immnunotherapy; molecular studies on self-assembly for peptides and DNA and related applications in tumor diagnosis and therapeutics and against human pathogenic bacteria; magnetic and conductive scaffolds for guiding tissue regeneration; multiple functions of magnetic nanoparticles in drug delivery and regenerative medicine; and re-purposing of traditional medicine in nano-formulations. In addition, it discusses common effects of nanomaterials, including reactive oxygen species and protein corona. Providing valuable insights and the presenting the latest research advances, the book allows readers to gain a systematic understanding of the topic.
Acknowledgments Contents Abbreviation 1 Abbreviation 2 Chapter 1: Magnetically Actuated Scaffolds to Enhance Tissue Regeneration 1.1 Introduction 1.2 Biological Effects of Magnetic Fields on Tissue Regeneration 1.3 Biological Effects of Magnetic Materials on Tissue Regeneration 1.4 Combination of Magnetic Scaffolds and Magnetic Fields to Accelerate Tissue Regeneration 1.4.1 Bone 1.4.2 Cartilage 1.4.3 Endothelial, Cardiac, and Neuron Cells 1.4.4 Immune Cells and Supportive Cells 1.4.5 Mechanisms and Modulation of Mechanical Stimulations by Magnetic Materials and Magnetic Fields 1.5 Summary and Perspective References Chapter 2: Conductive Nanostructured Scaffolds for Guiding Tissue Regeneration 2.1 Introduction 2.2 Classification and Fabrication of Conductive Scaffolds 2.2.1 Conductive Polymers 2.2.2 Conductive Inorganic Nanoparticles 2.2.3 Summarization of Physical Properties for Conductive Scaffolds 2.3 Conductive Scaffolds in Myocardial Tissue Regeneration 2.3.1 Composite Scaffolds Containing Conductive Polymers 2.3.1.1 Polypyrrole 2.3.1.2 Polyaniline and Derivatives 2.3.2 Conductive Scaffolds Containing Inorganic and Metal Nanoparticles 2.3.2.1 Carbon Nanotubes 2.3.2.2 Graphene and Derivatives 2.3.2.3 Gold Nanoparticles 2.3.2.4 Silicon Nanowires 2.3.2.5 Mechanistic Exploration of Conductive Scaffolds Enhance Cardiac Tissue Regeneration 2.4 Conductive Scaffolds for Skeletal and Bone Regeneration 2.4.1 Carbon-Based Materials Used in Conductive Scaffolds 2.4.2 Conductive Polymers 2.5 Conductive Materials for Nerve Regeneration and Treatment 2.5.1 Conductive Polymers 2.5.2 Inorganic Nanoparticles 2.6 Wound Healing 2.7 Perspectives References Chapter 3: Nanotechnology in Dental Therapy and Oral Tissue Regeneration 3.1 Nanotechnology in Tooth Defect Therapy 3.1.1 Nano Tooth Filling Materials 3.1.2 Nano-Modified Adhesive Material 3.1.2.1 Enamel Bonding 3.1.2.2 Dentine Bonding 3.1.3 Nano Root Canal Filling Materials 3.1.4 Nano Enhanced Resin-Based Materials for Dentition Restoration 3.2 Nanotechnology in Oral Tissue Regeneration 3.2.1 Nanotechnology to Improve Stem Cells 3.2.2 Nanotechnology and Dental Stem Cells 3.2.3 Nanotechnology to Regenerate Keratinized Gingival 3.2.4 Nanotechnology to Regenerate Tooth 3.2.5 Shortcomings in the Current Application of Nanotechnology 3.3 Application of Antibacterial Nanomaterials in Dentistry 3.3.1 The Toxicological Side Effects in Nano-Incorporated Dental Materials and Device References Chapter 4: Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology 4.1 Antitumor Immune Responses and Cancer Immunotherapy 4.2 Nanomaterials for Immunomodulation and Cancer Immunotherapy 4.2.1 Synthetic Nanomaterials 4.2.1.1 Organic Nanoparticles 4.2.1.2 Inorganic Nanoparticles 4.2.1.3 Organic-Inorganic Hybrid Nanoparticles 4.2.2 Biologically Derived Nanomaterials 4.2.2.1 Caged Protein-Based Nanoparticles 4.2.2.2 Cell Membrane-Based Nanoparticles 4.2.2.3 Immune Cell-Based Drug Delivery for Cancer Immunotherapy 4.3 Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology 4.3.1 Enhancing Immunogenic Antigen Release with Nanomaterials (Step 1) 4.3.1.1 PDT-Triggered Immunogenic Antigen Release 4.3.1.2 PTT-Triggered Immunogenic Antigen Release 4.3.1.3 Chemotherapy-Triggered Immunogenic Antigen Release 4.3.1.4 Radiotherapy-Triggered Immunogenic Antigen Release 4.3.1.5 Oncolytic Virus-Triggered Immunogenic Antigen Release 4.3.2 Promoting Dendritic Cell-Targeted Immunotherapy with Nanomaterials (Step 2) 4.3.2.1 Nanomaterial-Based Cancer Vaccines 4.3.2.2 Facilitating APC-Targeted Vaccine Delivery with Nanomaterials 4.3.2.3 Promoting Antigen Cross-Presentation with Nanomaterials 4.3.2.4 Intrinsic Immunostimulatory Effect of Nanomaterials 4.3.2.5 Enhancing the Potency of Immunoadjuvants with Nanomaterials 4.3.3 Lymph Node-Targeted Cancer Immunotherapy with Nanomaterials (Step 3) 4.3.4 Reprogramming the Tumor Microenvironment with Nanomaterials (Steps 5 and 7) 4.3.4.1 Repolarizing Tumor-Associated Dendritic Cells with Nanomaterials 4.3.4.2 Targeting Tumor-Associated Macrophages with Nanomaterials 4.3.4.3 Targeting Myeloid-Derived Suppressor Cells with Nanomaterials 4.3.4.4 Targeting Regulatory T Cells with Nanomaterials 4.3.4.5 Targeting Immunosuppressive Factors with Nanomaterials 4.3.4.6 Ameliorating Hypoxia in Tumor Microenvironment with Nanotechnology 4.3.5 Targeting Antitumor Effector Cells with Nanomaterials (Step 6 and 7) 4.3.5.1 T Cell-Targeted Immunotherapy 4.3.5.2 NK Cell-Targeted Immunotherapy 4.3.6 Nanotechnology for Combinational Cancer Therapy 4.4 Perspectives 4.5 Conclusions References Chapter 5: Molecular Studies of Peptide Assemblies and Related Applications in Tumor Therapy and Diagnosis 5.1 Structures and Formation of Amyloid-Like Fibrils 5.1.1 Structures of Amyloid-Like Fibrils 5.1.2 Formation of Amyloid-Like Aggregates 5.2 Structural Perspectives of Peptide-Based Aggregates 5.2.1 Primary Peptide Structures with Aggregation Propensity 5.2.2 Nanostructures of Peptide Aggregates 5.3 Self-Assembled Peptide-Based Biomaterials 5.3.1 In Vitro Self-Assembled Peptide-Based Nanomaterials 5.3.2 In Vivo Peptide Assemblies for Tumor Diagnosis and Therapeutics 5.3.3 De Novo Design of Biologically Active Amyloid 5.4 Peptide-Based Drug Delivery Systems 5.4.1 De Novo Designed Peptides for Drug Delivery Systems 5.4.2 Peptide-Aggregate-Based Drug Delivery Systems 5.5 Conclusions References Chapter 6: Rationally Designed DNA Assemblies for Biomedical Application 6.1 Introduction 6.2 Self-Assembled DNA Nanostructures 6.3 DNA-Based Nanovehicles for Biomedical Application In Vitro and In Vivo 6.3.1 Chemotherapeutic Drugs 6.3.2 Functional Nucleic Acids 6.3.3 Nanoparticle 6.3.4 Proteins and Peptides 6.3.5 Dynamic DNA Nanodevices and Machines for Biomedical Application 6.4 Summary and Outlook References Chapter 7: Intermolecular Interactions and Self-Assembly of Peptide-Based Nanomaterials Against Human Pathogenic Bacteria 7.1 Introduction 7.2 Development of Peptide-Based Materials with Antibacterial Activity 7.2.1 Peptide Structures 7.2.1.1 Helices 7.2.1.2 β Structure 7.2.1.3 Other Nonrepetitive Structures 7.2.2 Self-Assembly of Peptides to Nanostructures 7.2.2.1 Tubular Nanostructures 7.2.2.2 Nanofibers 7.2.2.3 Spherical/Vesicle Structures 7.2.3 Structural Characterization of Self-Assembled Peptides 7.2.3.1 X-Ray Diffraction 7.2.3.2 NMR Spectroscopy 7.2.3.3 Cryogenic Electron Microscopy 7.2.3.4 Other Methods 7.2.4 The Application of Self-Assembled Peptide-Based Nanomaterials in the Diagnosis of Bacterial Infection 7.2.5 Application of Self-Assembled Peptide-Based Nanomaterials in the Treatment of Bacterial Infection 7.2.6 Encapsulation of Peptide by Nanomaterials Against Bacteria 7.3 Development of Peptide Mimetic Materials with Antibacterial Activity 7.3.1 β-Peptide: Molecular Structure and Conformational Stability 7.3.2 Intermolecular Interactions Encoded by β-Peptides 7.3.3 β-Peptide: Hierarchic Assemblies and Functional Properties 7.3.4 Nylon-3 Polymers Against Pathogens 7.4 Conclusions References Chapter 8: Nanomaterials and Reactive Oxygen Species (ROS) 8.1 ROS in Biology System 8.1.1 The Source of ROSs in Biology: Where the ROSs Produced? 8.1.2 The Regulation of ROS Production in Biology 8.2 Biological Effects Induced by Oxidative Stress from Nanoparticles 8.2.1 Antioxidant Defense 8.2.2 Inflammation 8.2.3 Cytotoxicity 8.3 Methods of Detecting ROS in Nanomaterials 8.3.1 ESR Technique 8.3.2 Optical Absorption 8.3.3 Spectroscopic Probe Technique 8.3.4 Nanoprobes for ROS Detection 8.4 Biomedical Applications of Nanomaterials by ROS Regulation 8.4.1 Cancer Therapy 8.4.2 Antibacteria 8.4.3 Prevention of ROS-Related Diseases 8.5 Outlook References Chapter 9: Protein Corona of Nanoparticles and Its Application in Drug Delivery 9.1 Introduction 9.2 Overview of Protein Corona 9.3 Characterization Techniques for Protein Corona 9.3.1 Isolation-Based Methodology 9.3.2 In Situ Measurements 9.3.3 Direct Imaging 9.3.4 Other Techniques 9.4 Influence of NP on Adsorbed Proteins 9.5 Influence of Protein Corona on NP 9.6 Influence of Protein Corona on Drug Delivery 9.6.1 Influence of Protein Corona on Drug Release 9.6.2 Influence of Protein Corona on Targeted Delivery 9.6.3 Influence of Protein Corona on Intracellular Delivery 9.6.4 Influence of Protein Corona on NP Toxicity 9.7 Exploring the Protein Corona for Drug Delivery 9.7.1 Exploiting Protein Corona to Load Drugs 9.7.2 Direct Modulation of Protein Corona to Improve Drug Delivery 9.7.3 Engineering NP to Tune Protein Corona for Drug Delivery 9.8 Challenges and Opportunities of Protein Corona in Drug Delivery 9.9 Conclusions References Chapter 10: Development of Realgar Nanotherapeutics for Cancer Treatments 10.1 Introduction 10.2 History of Use of Realgar in Medical Practices 10.2.1 Realgar in Traditional Chinese Medicine 10.2.2 Realgar in the Treatment of Cancer 10.3 Traditional Processing Strategy and Challenges 10.4 Development of Realgar Nanotherapeutics 10.4.1 Top-Down Approaches 10.4.1.1 Milling 10.4.1.2 Microfluidizer 10.4.2 Bottom-Up Approaches 10.4.2.1 Chemical Precipitation 10.4.2.2 Solvent Relay 10.4.2.3 Quantum Dots 10.5 Development of One-Step Preparation of Solid Dispersion 10.6 Therapeutic Effects of Realgar Nanoformulations in Cancer 10.6.1 Therapeutics Effects of Realgar Nanoformulations in AML 10.6.2 Therapeutics Effects of Realgar Nanoformulations in CML 10.6.3 Therapeutics Effects of Realgar Nanoformulations in Solid Tumor 10.6.4 Therapeutic Mechanisms of Realgar in Different Forms 10.7 Summary and Perspectives References Chapter 11: Fabrication and Applications of Magnetic Nanoparticles-Based Drug Delivery System: Challenges and Perspectives 11.1 Composition of MNPs Drug Carriers 11.2 Applications of MNPs 11.2.1 Drugs Carriers 11.2.2 Targeted Drugs Carriers 11.2.3 Magnetic Hyperthermia 11.2.4 MRI Contrast Agents 11.2.5 Tumor Theranostics 11.2.6 Nanozyme 11.2.7 Summary 11.3 Magnetic Drug Loading System 11.3.1 Magnetic Targeted Drug Carriers 11.3.1.1 Fabrication of Monodisperse IONPs 11.3.1.2 Fabrication of Elements-Doping IONPs 11.3.1.3 Fabrication of Core/Shell IONPs 11.3.2 Drug Loading Methods 11.3.2.1 Non-covalent Self-Assembly 11.3.2.2 Chemical Bonding 11.4 3S Effects of MNPs 11.4.1 Size Effects 11.4.2 Surface Effects 11.4.2.1 Small Molecular Compounds 11.4.2.2 Polymer 11.4.2.3 Natural Materials 11.4.3 Shape Effects 11.5 Perspectives and Future Challenges References