دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: Adil Denizli, Marcelo Alencar, Tuan Anh Nguyen, David Motaung سری: Micro and Nano Technologies ISBN (شابک) : 0323911668, 9780323911665 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 352 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکههای سنجش از راه دور هوشمند مبتنی بر فناوری نانو برای پیشگیری از بلایا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شبکههای سنجش از راه دور هوشمند مبتنی بر فناوری نانو برای پیشگیری از بلایا چگونگی استفاده از فناوری نانو و فناوری فضایی را برای تشخیص خطرات بلایای طبیعی در مراحل اولیه، با استفاده از حسگرهای ارزانقیمت، صورتهای فلکی ارزان قیمت نشان میدهد. ماهوارههای مدار زمین (LEO) و شبکههای بیسیم هوشمند با ابزارهای هوش مصنوعی (AI).
سنسورهای مبتنی بر نانومواد (نانوحسگرها) میتوانند چندین مزیت را نسبت به همتایان میکرو خود ارائه دهند. مانند توان کمتر یا مصرف برق خود، حساسیت بالا، غلظت کمتر آنالیت ها، و فاصله اندرکنش کمتر بین جسم و حسگر. علاوه بر این، با پشتیبانی از ابزارهای هوش مصنوعی، مانند منطق فازی، الگوریتمهای ژنتیک، شبکههای عصبی و هوش محیطی، سیستمهای حسگر با استفاده از تعداد زیادی سنسور هوشمندتر میشوند.
این کتاب یک منبع مرجع مهم برای دانشمندان مواد، مهندسان، و دانشمندان محیط زیست است که به دنبال درک این موضوع هستند که چگونه راه حل های مبتنی بر فناوری نانو می توانند به کاهش بلایای طبیعی کمک کنند.
Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention outlines how nanotechnology and space technology could be applied for the detection of disaster risks in early stages, using cheap sensors, cheap constellations of low Earth orbit (LEO) satellites, and smart wireless networks with artificial intelligence (AI) tools.
Nanomaterial-based sensors (nanosensors) can offer several advantages over their micro-counterparts, such as lower power or self-powered consumption, high sensitivity, lower concentration of analytes, and smaller interaction distances between the object and the sensor. Besides this, with the support of AI tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems are becoming smarter when a large number of sensors are used.
This book is an important reference source for materials scientists, engineers, and environmental scientists who are seeking to understand how nanotechnology-based solutions can help mitigate natural disasters.
Front Cover Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention Copyright Dedication Contents Contributors Preface Section 1: Nanotechnology for disaster prevention Chapter 1: Application of nanotechnology in disaster prevention: An introduction 1.1. Introduction 1.2. Nanotechnology in sustainable agriculture and hunger prevention 1.3. Role of nanotechnology in environmental pollution prevention 1.4. Nanotechnology in harvesting renewable energy 1.5. Nanotechnology in health sector 1.6. Nanotechnology in protection of infrastructures 1.7. Conclusion References Chapter 2: Nanomaterials for construction building products designed to withstand natural disasters 2.1. Introduction 2.2. Nanomaterials used in the construction 2.3. Traditional materials for construction against disaster 2.4. Sustainable usages of nano-based materials 2.4.1. Nanoceramic coating 2.4.2. Nano fibers 2.4.3. Nanocomposites 2.4.4. Nanoclays 2.4.5. Titanium dioxide 2.4.6. Carbon nanotubes 2.4.7. Elctrochromic windows 2.4.8. MMFX2 steel 2.4.9. Nanowire 2.4.10. Nanosilica 2.5. Nanomaterials in advanced architecture 2.6. Health aspects of nanomaterials when used in the construction building materials 2.7. Environmental advantages and disadvantages and life-cycle assessment 2.8. Risk assessment and analysis for nanomaterials used in the construction 2.9. Regulations data in various countries 2.9.1. United States 2.9.2. Australia 2.9.3. Europe 2.9.4. China 2.10. Conclusion 2.11. Future scope References Chapter 3: Nano-sensors and nano-devices for biological disaster monitoring (virus/disease epidemics/animal plagu 3.1. Introduction 3.2. Nano-sensors and nano-devices 3.3. The biological disaster monitoring applications 3.3.1. Viruses 3.3.1.1. Human immunodeficiency virus 3.3.1.2. Human papilloma virus 3.3.1.3. SARS virus 3.3.1.4. Ebola virus 3.3.1.5. Zika virus 3.3.1.6. Hepatitis 3.3.1.7. Influenza virus 3.4. Conclusions References Chapter 4: Internet of Things-based disaster management system 4.1. Introduction to disaster 4.2. Classification 4.3. Wireless sensor network and internet of things 4.3.1. IoT 4.3.2. Sensors used for disaster management 4.4. Design challenges of using WSN/IoT in disaster management and possible solutions 4.4.1. Deployment strategy 4.4.2. IoT system 4.4.2.1. Hardware Edge Network Core Date integration Data management Business innovation 4.4.2.2. IoT-supported protocols for disaster management 4.5. Results and discussion 4.5.1. Landslide 4.5.2. Earthquake disaster management 4.5.3. Fire detection alarm using IoT 4.5.4. Industrial disaster management 4.5.5. Urban disaster management 4.6. Scope for research in disaster management 4.6.1. Cost 4.6.2. Energy 4.6.3. Interoperability 4.6.4. Maintenance 4.6.5. Robust and fault tolerance 4.6.6. Minimize computation 4.6.7. Artificial intelligence 4.6.8. Data 4.7. Conclusion References Chapter 5: Nanosensors for smartphone-enabled sensing devices 5.1. Introduction 5.2. Nanosensors 5.2.1. Smart sensing system 5.3. Nanosensors on smart platforms 5.3.1. Optical nanosensors on smartphone sensing 5.3.2. Mass-based nanosensors on smartphone sensing 5.3.3. Electrochemical nanosensors on smartphone sensing 5.4. Conclusion and future perspectives References Chapter 6: Smart and autonomous (self-powered) nanosensor networks 6.1. Introduction 6.2. Technology for self-powered nanosensors 6.3. Applications of self-powered sensors for natural disasters 6.4. Conclusion and remarks References Chapter 7: Nanosensors for smartphone sensing method 7.1. Introduction 7.2. Applications of nanosensors in smartphones 7.2.1. Energy autonomy 7.2.2. Physical durability 7.3. Conclusion and remarks References Section 2: Space technology for disaster prevention Chapter 8: Nanotechnology in the space industry 8.1. Introduction of nanotechnology in space technology 8.2. Nanomaterials in space industries 8.2.1. Carbon nanotubes 8.2.2. Nano Ti alloys 8.2.3. Nano composites 8.3. Nanostructures in aero-parts 8.3.1. Nanosensors 8.3.2. Thin solar sails 8.3.3. Nanofuel in propulsion systems 8.3.4. CNT-wheels 8.3.5. Aero-vehicle frames 8.4. Summary References Chapter 9: Unmanned aerial vehicles (UAVs) for disaster management 9.1. Introduction 9.2. UAV advancement for disaster management 9.2.1. UAV services 9.3. UAV-assisted communication network for disaster management 9.3.1. UAV-assisted network architecture for disaster management 9.3.2. UAV-assisted network design considerations 9.4. Disaster types and phases 9.4.1. Type A disasters: Massive terrestrial infrastructure damage 9.4.2. Type B disasters: Moderate terrestrial infrastructure damage 9.4.3. Type C disaster: Low terrestrial infrastructure damage 9.5. Case studies 9.5.1. Case study 1: UAV-assisted earthquake response and recovery 9.5.2. Case study 2: Wildfire detection and monitoring 9.5.3. Case study 3: UAV-assisted biological diseases management 9.6. Conclusions References Chapter 10: The role of satellite remote sensing in natural disaster management 10.1. Introduction 10.1.1. Hydrological and geological hazards 10.1.2. Geophysical hazards 10.1.3. Meteorological hazards 10.1.4. Climatological hazards 10.2. Remote sensing data and techniques to access natural disasters 10.2.1. Hydrological and geological hazards 10.2.1.1. Floods 10.2.1.2. Landslides 10.2.1.3. Sea-level rise 10.2.2. Geophysical hazards 10.2.2.1. Earthquakes 10.2.2.2. Volcanoes 10.2.2.3. Tsunamis 10.2.3. Meteorological hazards 10.2.3.1. Storms 10.2.3.2. Tropical cyclones 10.2.4. Climatological hazards 10.2.4.1. Droughts 10.2.4.2. Fires 10.2.4.3. Desertification 10.2.4.4. Coastal erosion 10.3. Conclusions References Chapter 11: The synergy of remote sensing and geographical information systems in the management of natural disasters 11.1. Introduction 11.2. The synergy of remote sensing and GIS in the management of natural disasters 11.2.1. Hydrological and geological hazards 11.2.2. Geophysical hazards 11.2.3. Meteorological hazards 11.2.4. Climatological hazards 11.3. Conclusions References Chapter 12: Small satellites for disaster monitoring 12.1. Introduction 12.2. Remote sensing platforms 12.2.1. Mission related aspects 12.2.1.1. Orbits and temporal resolution 12.2.1.2. Spatial resolution 12.2.1.3. Necessary infrastructure 12.3. A taxonomy of disasters 12.4. Enabling technologies 12.4.1. Instruments 12.4.2. Constellations 12.4.3. Ground segment 12.4.4. Data collection systems 12.5. Conclusions References Chapter 13: A comparative study of deep learning-based time-series forecasting techniques for fine-scale&spi 13.1. Introduction 13.2. Data 13.2.1. IoT air temperature from GeoTab 13.2.2. Air temperature measurements from weather underground 13.2.3. High-resolution rapid refresh (HRRR) 13.3. Methods 13.3.1. Stacked LSTM 13.3.2. ConvGRU 13.3.3. Transformer 13.4. Training and evaluation 13.4.1. Training and testing data split 13.4.2. Evaluation 13.4.3. Baseline models 13.5. Experiment result 13.5.1. Overall performance comparison 13.5.2. Sensitivity of GeoTab missing data ratio 13.5.3. Impact of adding historical WU in training 13.5.4. Performance on cases with rapid air temperature change 13.5.5. Comparison with HRRR 13.6. Conclusions References Chapter 14: Satellite and aerial remote sensing in disaster management: An introduction 14.1. Introduction 14.2. Data and methods 14.2.1. Data 14.2.2. Methods 14.2.2.1. Preparation of spatial-factor layers 14.2.2.2. Architecture of agent-based disaster risk dynamics model (AB-DRDM) 14.3. Results 14.4. Conclusions References Chapter 15: Emerging role of unmanned aerial vehicles (UAVs) for disaster management applications 15.1. Introduction 15.2. Disaster management cycle 15.3. Unmanned aerial vehicles (UAVs) 15.4. Overview of UAV sensors 15.5. UAV regulations 15.6. UAV hardware considerations 15.7. Applications of UAVs in disaster management 15.7.1. Land use classification 15.7.2. Early warning systems 15.7.3. Emergency communication networks 15.7.4. Logistics 15.7.5. Baseline data collection 15.7.6. Disaster surveying 15.7.7. Search and rescue 15.7.8. Structural health monitoring 15.7.9. Reconstruction monitoring 15.8. Future applications and challenges References Chapter 16: Smart remote sensing network for early warning of disaster risks 16.1. Introduction 16.2. Remote sensing network architecture 16.2.1. Wireless sensor networks 16.2.2. Cloud integration 16.3. Utilizing machine learning for smart sensing 16.3.1. Smart sensing for agriculture applications 16.3.2. Smart sensing for industry 4.0 applications 16.4. UAV potential in early warning systems 16.4.1. UAV for early nature disaster detection 16.4.2. Wildfire detection 16.4.3. Mountain hazards detection 16.4.4. Flood detection 16.4.5. General natural disaster 16.4.6. Cooperative UAVs 16.5. Conclusion References Index Back Cover