دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9783030449957, 3030449955 ناشر: SPRINGER NATURE سال نشر: 2020 تعداد صفحات: 408 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Nanotechnology-based industrial applications of ionic liquids به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای صنعتی مایعات یونی مبتنی بر فناوری نانو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حلال های متعددی که در فرآیندهای شیمیایی استفاده می شوند دارای خواص سمی و ناایمن هستند که نگرانی های زیست محیطی قابل توجهی از انتشارات جوی گرفته تا آلودگی پساب های آب ایجاد می کند. برای مبارزه با این تهدیدات زیست محیطی، در طول دو دهه گذشته، زمینه شیمی سبز به منظور توسعه فرآیندها و تکنیک های واکنش طبیعی بیشتر شامل استفاده از حلال های غیر متعارف برای کاهش تولید حلال های زباله و در نتیجه کاهش اثرات منفی بر محیط زیست، رشد کرده است. مایعات یونی به طور خاص جایگزین های سازگار با محیط زیست برای حلال های معمولی هستند و به همین دلیل در دهه گذشته کاربرد گسترده تری داشته اند. آنها در فرآیندهایی مانند استخراج، جداسازی، خالص سازی ترکیبات آلی، معدنی و بیوان آلی، محیط واکنش در کاتالیز بیوشیمیایی و شیمیایی، سنتز آلی سبز و داروها و سایر کاربردهای صنعتی مورد استفاده قرار گرفته اند. بنابراین، مایعات یونی برای اثبات خود یک رسانه سبزتر مناسب برای دوام اقتصادی در فرآیندهای شیمیایی، منجر به توسعه پایدارتر می شوند. این نسخه به بررسی کاربرد مایعات یونی به عنوان یک حلال سبز می پردازد. این شامل یک نمای کلی پیشرفته در مورد مایعات یونی به عنوان حلال های سبز برای فرآیندها و تکنیک های شیمیایی، و همچنین برخی از کاربردهای صنعتی مفید آنها است.
Numerous solvents used in chemical processes have poisonous and unsafe properties that pose significant ecological concerns ranging from atmospheric emissions to the contamination of water effluents. To combat these ecological threats, over the course of the past two decades, the field of green chemistry has grown to develop more natural reaction processes and techniques involving the use of nonconventional solvents to diminish waste solvent production and thus decrease negative impact on the environment. Ionic liquids in particular are more environmentally friendly substitutes to conventional solvents, and as such, have seen more widespread use in the past decade. They have been used in such processes as extraction, separation, purification of organic, inorganic, and bioinorganic compounds, reaction media in biochemical and chemical catalysis, green organic and drug synthesis, among other industrial applications. Thus, in proving themselves a suitable greener media for economic viability in chemical processes, ionic liquids are leading to more sustainable development. This edition explores the application of ionic liquids as a green solvent. It contains a state-of-the-art overview on ionic liquids as green solvents for chemical processes and techniques, as well as some of their useful industrial applications.
Preface Contents About the Editors Contributors Chapter 1: Ionic Liquids as “Green Solvents”: Are they Safe? 1.1 Introduction 1.2 (Eco)toxicity of Ionic Liquids 1.3 Ionic Liquids and Safety to Humans 1.4 Conclusion References Chapter 2: Ionic Liquids: Green Solvent for Biomass Pretreatment 2.1 Introduction 2.2 History 2.3 Application of Ionic Liquids 2.3.1 Material Synthesis 2.3.2 Lubricant 2.3.3 Separation and Extraction of Materials 2.3.4 Electrolyte 2.3.5 Use as a Solvent 2.4 Lignocellulosic Biomass Processing 2.4.1 Solubility of Cellulose in Ionic Liquid 2.4.2 Association of Lignin Extraction to Cellulose Crystallinity 2.5 Pretreatment of Sugarcane Bagasse 2.6 Problems Associated with Ionic Liquid Pretreatment 2.7 Concluding Remarks References Chapter 3: Ionic Liquids as Solvents and Catalysts for Biodiesel Production 3.1 Introduction 3.2 Biodiesel Production 3.3 Applications of Ionic Liquids for Biodiesel Production 3.3.1 Ionic Liquids as Biodiesel Catalysts 3.3.2 Ionic Liquids in Combination with Other Materials 3.3.3 Use of Ionic Liquids in Enzymatic Biodiesel Production 3.4 Conclusions References Chapter 4: Biocatalysis in Ionic Liquids: Enzymatic Synthesis of Sugar Fatty Acid Esters 4.1 Introduction 4.2 Conventional Synthesis of Sugar Fatty Acid Esters 4.2.1 Chemical Synthesis 4.2.2 Enzymatic Synthesis 4.3 Potential of Ionic Liquids in Biocatalysis 4.4 Enzymatic Synthesis of Sugar Fatty Acid Esters in Ionic Liquids 4.4.1 Lipase Activity and Stability 4.4.2 Substrate Solubility 4.4.3 Types of Sugar Fatty Acid Esters 4.4.3.1 Pure Ionic Liquids or Ionic Liquids Mixtures as Solvents 4.4.3.2 Ionic Liquids/Organic Solvents Mixtures as Solvents 4.5 Conclusion References Chapter 5: Ionic Liquid for the Extraction of Plant Phenolics 5.1 Introduction 5.1.1 Ionic Liquids 5.1.1.1 Preparation of Ionic Liquids 5.1.1.2 Analytical Potential of Ionic Liquids 5.1.1.3 Ionic Liquids Green Solvents 5.1.2 Ionic Liquids as an Extraction Solvent 5.1.3 Ionic Liquids as Macerating Agent 5.1.4 Ionic Liquid-Based Liquid–Liquid Extraction 5.1.5 Ionic Liquid-Assisted Microwave Extraction 5.1.6 Ionic Liquid-Assisted Ultrasound Extraction 5.1.7 Conclusions and Future Prospectus References Chapter 6: Ionic Liquids for the Sustainable Development of Chemistry 6.1 Introduction 6.2 The Applications of Ionic Liquids 6.3 Ionic Liquids to Carry out Isomerization and Dimerization Reactions 6.4 Conclusions References Chapter 7: Ionic Liquids for Enhanced Enzymatic Saccharification of Cellulose-Based Materials 7.1 Introduction 7.2 Experimental Part 7.2.1 Materials 7.2.2 Cellulose Substrates Pre-Treatment with Ionic Liquids 7.2.3 Cellulase Catalyzed Enzymatic Saccharification of Cellulose Substrates 7.2.4 Investigation Methods Used for Structural Characterization of Cellulose Substrates 7.3 Experimental Results and Discussion 7.3.1 Enzymatic Saccharification of Cellulose Substrates 7.3.2 FTIR Spectroscopy Investigation of Cellulose Substrates During Dissolution in Ionic Liquids and Saccharification Under Enzyme Attack 7.3.3 WAXD Investigation of Cellulose Substrates During Dissolution in Ionic Liquids and Saccharification Under Enzyme Attack 7.4 Concluding Remarks References Chapter 8: Biological Applications of Ionic Liquids-Based Surfactants: A Review of the Current Scenario 8.1 Introduction 8.2 ILBS Self-Assembly Features 8.2.1 Micellar Formation in ILBS 8.2.2 ILBS—Microemulsion System 8.2.3 Self-Assembly of ILBS Vesicles 8.3 Application of ILBS in Biological Systems 8.3.1 ILBS in Pharmaceuticals 8.3.2 ILBS in Protein and Enzyme-Based Applications 8.4 Conclusion References Chapter 9: Ionic Liquid for Water Purification 9.1 Introduction 9.1.1 Water 9.1.2 Water Purification 9.1.3 Ionic Liquids 9.1.3.1 Tunable Character of Ionic Liquids 9.1.3.2 Polymerization in Ionic Liquids 9.1.3.3 Non-volatile Character of Ionic Liquids 9.1.3.4 Solvation Power 9.1.3.5 Mesoscale Structure 9.1.4 Ionic Liquids in Water Purification 9.1.4.1 Ionic Liquid-Mediated Solvent Extraction 9.1.4.2 Ionic Liquid Membranes 9.1.4.3 Supported Ionic Liquid Membranes (SILMs) 9.1.4.4 Ionic Liquid-Mediated Pervaporation 9.1.4.5 Ionic Liquid-Mediated Adsorption 9.1.4.6 Miscellaneous Flocculation 9.1.4.7 Recovery of Ionic Liquids and Future Prospectus 9.2 Conclusion References Chapter 10: Electrical Double-Layer Structure and Property of Ionic Liquid-Electrode System for Electrochemical Applications 10.1 Introduction 10.2 Brief Introduction of Ionic Liquids 10.2.1 Ionic Liquids 10.2.2 Physical and Chemical Property of Ionic Liquids 10.2.2.1 Melting Point 10.2.2.2 Viscosity 10.2.2.3 Density 10.2.2.4 Conductivity and Electrochemical Window 10.3 The Theoretical Model of Electrical Double Layer 10.3.1 Helmholtz Double-Layer Model 10.3.2 Gouy and Chapman Dispersed Double-Layer Model 10.3.3 Gouy-Chapman-Stern Model 10.3.4 Modified Gouy-Chatman-Stem Model 10.3.5 Bockris-Devanathan-Muller BDM Model 10.4 Experimental Study Progress of Electrical Double Layer in Ionic Liquids 10.4.1 Electrochemical Measurement Technology 10.4.2 Atomic Force Microscopy (AFM) Technology 10.4.3 Scanning Tunneling Microscopy (STM) Technology 10.4.4 Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) Technology 10.4.5 Surface-Enhanced Raman Spectroscopy (SERS) 10.5 Theoretical Study Progress of Electrical Double Layer in Ionic Liquids 10.5.1 Classical Density Functional Theory 10.5.2 Monte Carlo Method 10.5.3 Molecular Dynamics Simulation 10.6 Conclusions References Chapter 11: Role of Ionic Liquid-Based Multipurpose Gas Hydrate and Corrosion Inhibitors in Gas Transmission Pipeline 11.1 Introduction 11.2 Gas Hydrate and Corrosion in Flow Pipeline 11.2.1 Gas Hydrate Formation and Inhibition 11.2.2 Corrosion Formation and Inhibition in Flow Pipeline 11.2.3 Gas Hydrate Prevention via Chemical Injection 11.2.3.1 Ionic Liquids as Thermodynamic Hydrate Inhibitors (THIs) 11.2.3.2 Ionic Liquids as Kinetic Hydrate Inhibitors (KHIs) 11.2.3.3 Ionic Liquids as Anti-agglomerants (AA) 11.2.4 Ionic Liquids (ILs) as Corrosion Inhibitors 11.2.5 Ionic Liquids (ILs) as Gas Hydrate and Corrosion Inhibitors (GHCI) 11.3 Conclusion 11.3.1 Future Prospects References Chapter 12: Production of Biodiesel Using Ionic Liquids 12.1 Introduction 12.2 Ionic Liquids 12.3 Ionic Liquids as Catalysts in Biodiesel Synthesis 12.3.1 Acidic Ionic Liquid Catalysts 12.3.2 Basic Ionic Liquid Catalysts 12.4 Ionic Liquids as Solvents and Co-solvents 12.5 Ionic Liquids as Extraction Solvents in Biodiesel Synthesis 12.5.1 Extraction of Lipids 12.5.2 Extraction of Free Fatty Acids 12.5.3 Extraction of Unsaturated Fatty Methyl Acid Esters 12.6 Deep Eutectic Solvents: A New Generation of Ionic Liquids 12.6.1 Removal of Glycerol from Crude Biodiesel 12.6.2 Deep Eutectic Solvents as Catalysts 12.7 Summary and Future Perspectives References Chapter 13: Green Synthesis of Nanoparticles and Their Application for Sustainable Environment 13.1 Introduction 13.2 Biological Synthesis of Nanoparticles 13.3 Plant Extract-Based Metal Nanoparticle Synthesis 13.4 Factors Affecting the Metal Nanoparticle Synthesis 13.4.1 Influence of pH 13.4.2 Effect of Concentration 13.4.3 Influence of Reaction Time 13.4.4 Effect of Reaction Temperature 13.5 Green Routes for NP Preparation 13.5.1 AgNPs and Ag-Doped NPs 13.5.2 Zerovalent Iron NPs and Fe-Doped NPs 13.5.3 AuNPs and Au-Doped NPs 13.5.4 CuO- and Cu-Doped NPs 13.5.5 Mixed Metal/Metal Oxide NPs 13.6 Characterization Techniques of NPs 13.6.1 UV-Vis Spectroscopy Method 13.6.2 Dynamic Light Scattering of NPs 13.6.3 TEM and FESEM Study 13.6.4 Influence of Zeta Potential (ζ) 13.6.5 Structural Morphology 13.7 Mechanism of NP Formation Using Bio-extract 13.8 Antimicrobial Activity Test of NPs 13.9 Overview References Chapter 14: Recent Advances in the Application of Greener Solvents for Extraction, Recovery and Dissolution of Precious Metals and Rare Earth Elements from Different Matrices 14.1 Introduction 14.2 Application of Ionic Liquids in Solvent Extraction of Precious Metals 14.3 Application of Solvent Extraction Based on Ionic Liquid Recovery of Rare Earth Elements 14.4 Future Challenges in the Application of Ionic Liquid for Recovery of Precious Elements and Rare Earth Elements 14.4.1 Application of Deep Eutectic Solvents for Recovery of Precious Elements and Rare Earth Elements 14.5 Conclusions References Chapter 15: Applications of Ionic Liquids in Chemical Reactions 15.1 Introduction 15.2 Examples of Different Heterocyclic Systems Synthesized by the Application of Ionic Liquids 15.2.1 Pyrroles, Indoles, and Fused Systems 15.2.2 Pyrazoles and Benzopyrazoles/Indazoles and Fused Systems 15.2.3 Imidazoles and Benzimidazoles 15.2.4 Triazoles and Benzotriazoles 15.2.5 Tetrazoles 15.2.6 Furans and Benzofurans 15.2.7 Oxazoles, Isoxazoles, and Benzoxazoles 15.2.8 Thiazoles and Benzothiazoles 15.2.9 Pyridines and Fused Analogues 15.2.10 Pyrazines and Fused Analogues 15.2.11 Phthalazines 15.2.12 Quinazolines 15.2.13 Quinoxalines 15.2.14 Oxazines and Benzoxazines 15.2.15 Thiazines and Fused Derivatives 15.2.16 Pyrimidines and Fused Derivatives 15.2.17 Acridines 15.2.18 Quinolines, Isoquinolines, and Fused Analogues 15.2.19 Pyrans, Chromans, and Fused Scaffolds 15.2.20 Coumarins and Related Fused Scaffolds 15.2.21 Thiazepines and Fused Analogues 15.2.22 Xanthenes and Related Analogues 15.3 Conclusions References Chapter 16: Role of Ionic Liquids in Food and Bioproduct Industries 16.1 Ionic Liquids, Versatile Solvent: An Introduction 16.2 Classification of Ionic Liquids 16.3 Properties of Ionic Liquids 16.4 General Applications of Ionic Liquids 16.5 General Characteristics of ILs 16.6 Importance of Science and Technology in Food Industry 16.7 Part of Food and Beverage Companies in Improving the World Population Health 16.8 Introduction to Food 16.9 Classification of Varieties of Food Consumed by Human Beings 16.9.1 Plant Origin 16.9.2 Animal Origin 16.10 Food Technology: Historical Approach 16.10.1 Definition of Food Security 16.11 Food Waste 16.12 The Scope and Economic Value-Added Compounds from Food Supply Chain Waste 16.13 Waste Food as Economic Resource in Producing Fuel, Materials and Chemicals: Present Situation and Global Scenario 16.14 The Origin of Food Waste 16.15 Methods of Conversion of Food Wastes into Useful and Economic Products 16.16 Conversion of Food Waste into Energy 16.17 Conversion of Food Waste into Biofuels and Profitable Products 16.18 Food Waste Biorefinery 16.19 Biodiesel Production 16.20 Biodiesel 16.21 An Introduction on How to Procure Biofuel from Waste Food 16.22 Production Ethanol from Food Waste 16.23 Production of Hydrogen from Waste 16.24 Methane Production from Food Waste 16.25 Biowaste 16.26 Usage of Ionic Liquids in Food and Biowaste Industry 16.27 Analysis of Various Food Products 16.28 Manufacture of Biofuels from Biomass and Vegetable Oils 16.29 Analysis of Materials Generated from Food Waste 16.30 Ionic Liquids and Their Toxic Effects 16.31 Conclusions References Index