دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Prashant Kesharwani (editor)
سری:
ISBN (شابک) : 0128198117, 9780128198117
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 274
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Nanotechnology Based Approaches for Tuberculosis Treatment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای مبتنی بر فناوری نانو برای درمان سل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
رویکردهای مبتنی بر فناوری نانو برای درمان سل رویکردهای مبتنی بر نانوتکنولوژی متعددی را مورد بحث قرار میدهد که ممکن است به غلبه بر محدودیتهای پایدار درمانهای مرسوم و سنتی کمک کند. این کتاب به طور خلاصه انواع نانوداروها، سنتز، فرمولاسیون، خصوصیات و کاربردهای آنها را به همراه مهم ترین راه های تجویز بیان می کند. همچنین پیشرفت ها و دستاوردهای اخیر در مورد اثربخشی درمانی را بررسی می کند و کاربردهای احتمالی آینده را در این زمینه ارائه می دهد. این منبع مفیدی برای محققین، محققان دارویی، مبتکران و دانشمندانی خواهد بود که بر روی پیشرفتهای فناوری در زمینه درمانهای هدفمند، سیستمهای تصویربرداری در مقیاس نانو، و روشهای تشخیصی سل کار میکنند.
Nanotechnology Based Approaches for Tuberculosis Treatment discusses multiple nanotechnology-based approaches that may help overcome persisting limitations of conventional and traditional treatments. The book summarizes the types of nano drugs, their synthesis, formulation, characterization and applications, along with the most important administration routes. It also explores recent advances and achievements regarding therapeutic efficacy and provides possible future applications in this field. It will be a useful resource for investigators, pharmaceutical researchers, innovators and scientists working on technology advancements in the areas of targeted therapies, nano scale imaging systems, and diagnostic modalities in tuberculosis.
Chapter 1 - Pathogenesis, biology, and immunology of tuberculosis 1 - Introduction 2 - Mycobacterium tuberculosis and its transmission 2.1 - Scientific classification [11] 2.2 - Transmission 3 - Factors responsible for its transmission 3.1 - Patient-related risk factor 3.1.1 - Proximate risk factor 3.1.2 - Links between proximate risk factors and socioeconomic status 3.1.3 - Role of urbanization 3.2 - Bacteriological factors 3.2.1 - Case Study 1 3.2.2 - Case Study 2 4 - Pathogenesis 4.1 - Survival mechanisms of Mycobacterium tuberculosis 4.1.1 - The uniqueness in cell wall structure 4.1.2 - Advantages due to presence of lipid at the cell wall 4.1.3 - Intercellular growth 4.1.4 - Function of phagocytic cells 4.1.5 - Stage of granuloma 4.1.6 - Inhibition of phagosome-lysosome fusion 4.1.7 - Role of eukaryotic like protein kinases in mycobacterial cell 4.1.8 - Seizing of calcineurin pathway 4.1.9 - The after stages of macrophage activation 4.1.9.1 - Role of cytokines 4.1.9.2 - Role of TLR ligands 4.1.9.3 - Role of mycobacterial glycolipids 4.1.9.4 - Modulation of bacterial metabolic pathway 4.1.9.5 - Transfer of protein 5 - Mycobacterium tuberculosis capsule 5.1 - Cellular structure of Mycobacterium tuberculosis capsule 5.2 - Host-pathogen interaction from the capsule point of view 5.3 - Pharmaceutical methodology to target capsule 6 - Immunology—Introduction 6.1 - Immunology of tuberculosis 6.1.1 - Immunology of upper respiratory track 6.2 - Innate immune system 6.2.1 - The Mycobacterial cell wall 6.2.2 - Innate immune recognition of Mycobacterium tuberculosis 6.2.3 - Bacterial factors that evade these innate immune responses 6.2.4 - Other mechanisms of recognition of Mycobacterium tuberculosis by innate immune system 6.2.5 - Effector functions of macrophages against engulfed Mycobacterium tuberculosis 6.3 - Inflammatory responses 6.4 - Adaptive immunity 6.5 - Granuloma formation 6.6 - Conclusion References Chapter 2 - Tuberculosis: introduction, drug regimens, and multidrug-resistance 1 - Introduction 2 - Drug regimens for the treatment of tuberculosis 3 - First line drugs for tuberculosis 4 - Isoniazid 5 - Rifampin 6 - Pyrazinamide 7 - Ethambutol 8 - Streptomycin 9 - Second-line antituberculosis drugs 10 - Mechanisms of drug resistance 11 - Conclusions References Chapter 3 - Nanotechnology as a potential tool against drug- and multidrug-resistant tuberculosis 1 - Tuberculosis as an infectious disease 2 - Nanotechnology-based systems and the administration of drugs against tuberculosis 2.1 - Solid-lipid forms 2.1.1 - Solid–lipid microparticles (SLM) 2.1.2 - Solid–lipid nanoparticles 2.1.3 - Nanostructured lipid carrier 2.2 - Emulsion-based systems 2.2.1 - Microemulsion (ME) 2.2.2 - Nanoemulsions (NE) 2.3 - Vesicular drug-delivery systems 2.3.1 - Liposomes (LPS) 2.3.2 - Niosomes (NIOs) 2.3.3 - Lipospheres (LIPs) 2.4 - Miscellaneous NPs 2.4.1 - Dendrimers 2.4.2 - Nano/micro particles (NMPs) 2.4.3 - Microspheres 2.4.4 - Carbon nanotubes (CNTBs) 2.4.5 - Nanosuspension (NSP) 2.4.6 - Nanomicelles (NMCs) 2.4.7 - Polymersomes 2.4.7.1 - Implications of nanotechnology in MDR-TB and XDR-TB treatment 3 - Factors affecting NPs properties 3.1 - Potential benefits and risks in the use of NPs 3.1.1 - Final considerations References Chapter 4 - Translational research for therapy against tuberculosis 1 - Research for tuberculosis elimination 2 - Advances in the therapy for tuberculosis 3 - New drugs for tuberculosis or new regimens 3.1 - The issues 3.2 - Recent advances 3.3 - Future challenges 4 - Drugs repurposed for tuberculosis 4.1 - The issues 4.2 - Recent advances 4.3 - Future challenges 5 - Host-directed therapy for tuberculosis 5.1 - The issues 5.2 - Recent advances 5.3 - Future challenges 6 - Tuberculosis research and care biomarkers. The OMICs of tuberculosis 6.1 - Genomics 6.2 - Transcriptomics 6.3 - Proteomics 6.4 - Metabolomics 7 - The impasse of translational medicine in tuberculosis and future challenges References Chapter 5 - Vaccine delivery systems against tuberculosis 1 - Introduction 2 - TB vaccine candidates in the pipeline 2.1 - Viral vectored TB vaccines 2.2 - Adjuvanted subunit TB vaccine 2.3 - DNA TB vaccine 2.4 - Whole-cell and live Mycobacteria TB vaccine 3 - Vaccine administration routes for TB vaccine 3.1 - Intradermal route of administration 3.2 - The intramuscular route of administration 3.3 - Subcutaneous route of administration 3.4 - Intranasal (mucosal, sublingual) route of administration- 4 - Advanced TB vaccine delivery systems and their related immune responses 4.1 - Nanoparticles-based TB vaccine delivery systems 4.2 - Cationic nanoparticle-based TB vaccine delivery 4.3 - Chitosan-based nanoparticle TB vaccine delivery 4.4 - Polymeric/polyester-based nanoparticle as a TB vaccine delivery system 4.5 - Liposome-based TB vaccine delivery 4.6 - Dendrimer-based TB vaccine delivery system 4.7 - Immune stimulating complexes (ISCOMs) as a TB vaccine delivery system 4.8 - Virus-like particles (VLPs)-based TB vaccine delivery system 4.9 - Virosomes-based TB vaccine delivery system 4.10 - Role of adjuvants in TB vaccine formulation and their delivery References Chapter 6 - Inhalable polymeric dry powders for antituberculosis drug delivery Abbreviations 1 - Introduction 2 - Challenges with current anti-TB therapies 3 - Rationale of pulmonary drug delivery in TB 4 - Feasibility of lung as a portal for delivery of ATD 5 - Pulmonary delivery of ATD 6 - Formulations for DPIs 7 - Drug carriers for pulmonary delivery 7.1 - Polymeric nanoparticles 7.2 - Hybrid nano-in-microparticles 7.3 - Solid-lipid nano particles 7.4 - Liposomes 7.5 - Microparticles 8 - Inhalation delivery devices for DPI 9 - Clinical trials 10 - Future of polymeric powder-based drug development for TB 11 - Conclusions References Chapter 7 - Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment 1 - Introduction 2 - Epidemiology 3 - Nature of causative agent 4 - Emergence of MDR and XDR TB 5 - Drug regimens 6 - Need for novel and sustained delivery systems 7 - Nanodelivery systems 7.1 - Introduction 7.2 - Types of nanocarriers 7.3 - Advantages of nanotechnology-based drug delivery system 8 - Liposomes 8.1 - Definition of liposomes 8.2 - Types and uses of liposomes 8.3 - Pulmonary TB and the importance of liposomal drugs 8.4 - Si-RNA liposomes 8.5 - Targeting of liposomes 9 - Niosomes 9.1 - Definition of niosomes 9.2 - Advantages of niosomes 9.3 - Various types of niosomes 9.4 - Niosomes versus liposomes; which is superior? 9.5 - Application of niosomes in drugs 9.6 - Niosomes in the treatment of TB 9.7 - Niosomal drug delivery system role in cerebral, drug-resistant TB 10 - Pulmonary delivery of nanoparticle encapsulated antitubercular drugs 11 - The future of combating TB References Chapter 8 - Polymer-based nanoparticles as delivery systems for treatment and vaccination of tuberculosis 1 - Polymer-based nanoparticles as drug delivery systems of tuberculosis 1.1 - Nanocarriers based on natural polymers 1.1.1 - Polysaccharide-based carriers 1.1.1.1 - Chitosan-based carriers 1.1.1.2 - Alginate-based carriers 1.1.1.3 - Guar gum-based carriers 1.1.2 - Polypeptide and protein-based carriers 1.1.2.1 - Gelatin-based carriers 1.1.2.2 - Albumin-based carriers 1.2 - Nanocarriers based on synthetic polymers 1.2.1 - PLGA-based nanocarriers 2 - Nanoparticle-based delivery systems for vaccination against tuberculosis 2.1 - Tuberculosis vaccines 2.1.1 - BCG 2.1.2 - Preexposure vaccines 2.1.3 - Postexposure vaccines 2.1.4 - Therapeutic vaccines 2.1.5 - Current vaccines weaknesses 2.2 - Adjuvants 2.3 - Vaccine delivery systems 2.3.1 - Natural polymer-based nanoparticles 2.3.2 - Biodegradable synthetic polymer-based nanoparticles 2.3.3 - Nonbiodegradable synthetic polymers 2.4 - The future challenges References Chapter 9 - Nanotechnology-based approaches for tuberculosis treatment 1 - Drug delivery systems 2 - Tuberculosis: the need for antitubercular drug delivery systems 3 - Nanomedicine and tuberculosis 4 - Oral ATD-nanomedicine 5 - Ligand-appended oral ATD-nanomedicine 6 - Pulmonary delivery of ATD-nanomedicine 7 - Injectable ATD-nanomedicine 8 - Alginate-based ATD-nanomedicine 9 - Lipid-based ATD-nanomedicine 9.1 - Liposome-based drug delivery systems 9.2 - Microemulsions as potential ATD delivery systems 9.3 - Niosomes-based ATD delivery system 9.4 - Solid lipid nanoparticles-based ATD-nanomedicine 10 - ATD-nanomedicine for special situations: cerebral TB, drug-resistant TB, and latent TB 11 - Potential toxicity of ATD-nanomedicine 12 - ATD-nanomedicine: unresolved and upcoming issues 13 - Conflict of interest References Chapter 10 - Dendrimer-based drug delivery systems for tuberculosis treatment 1 - Introduction 2 - Dendrimers 3 - PAMAM dendrimers for tuberculosis treatment 4 - PPI dendrimers for tuberculosis treatment 5 - Melamine, PEHAM, and PEA dendrimers for tuberculosis treatment 6 - Conclusion References Chapter 11 - Polymeric micelle-based drug delivery systems for tuberculosis treatment 1 - Introduction 2 - The structure of polymeric micelle 2.1 - Corona of miceller structure 2.2 - Core of miceller structure 3 - Commonly used polymers in polymeric micelle 3.1 - Commonly used amphiphilic block copolymers 4 - Polymeric micelles for enhanced permeability and retention effect 4.1 - Factors affecting EPR of miceller deliveries 4.1.1 - Bradykinin and permeability of cells 4.1.2 - Free radicals in cell permeability 4.1.3 - Permeability and prostaglandin with other factors 5 - Tuberculosis and urge of novel delivery approaches 6 - Recent advances of polymeric micelles in tuberculosis 7 - Conclusion Acknowledgment Conflict of interest References Chapter 12 - Nanostructured lipid carrier-based drug delivery systems for tuberculosis treatment 1 - Methods of production 1.1 - Hot homogenization method 1.2 - Cold homogenization method 2 - Excipients used in lipid nanocarriers 2.1 - Lipids 2.2 - Emulsifiers 3 - Challenges for current tuberculosis therapy 4 - Lipid nanoparticles for TB treatment 5 - Solid lipid nanoparticles and nanostructured lipid carriers as alternative nanomedicines for TB treatment 6 - Lipid nanoparticles functionalization References Chapter 13 - DNA markers and nano-biosensing approaches for tuberculosis diagnosis List of abbreviations 1 - Introduction 2 - DNA structure 3 - Carbonaceous nanomaterials-based DNA biosensors 3.1 - Graphene derivatives 3.2 - Carbon nanotubes 4 - Nanoparticles based-DNA biosensors 4.1 - Noble metal nanoparticles 4.2 - Metal oxide nanoparticles 4.3 - Magnetic beads 4.4 - Quantum dots 5 - Conclusion References Chapter 14 - Recent advancement and future perspective for the treatment of multidrug-resistant tuberculosis 1 - Multidrug-resistant tuberculosis (MDR-TB): the emergence of new global threat to tuberculosis (TB) eradication 2 - The progression of treatment guidelines for MDR-TB: the past and present 3 - The advancement in MDR-TB treatment: the recent, on-going, and future direction 3.1 - The promising new all-oral drugs versus the extensively use injectable drugs 3.1.1 - Bedaquiline 3.1.2 - Delamanid 3.1.3 - Pretomanid—the newly approved oral drugs for the treatment of highly resistant TB 3.2 - Other ongoing trials for new treatment regimen for MDR-TB/XDR-TB 4 - Host-directed therapies as a future option in treating MDR-TB 5 - Conclusion References Chapter 15 - Nanotechnology approach in conquering anti-TB resistance Abbreviations 1 - Mycobacterium: pathogenesis and its problem in the resistant 2 - Antituberculosis and the mechanism of antituberculosis resistant 3 - Nanoparticle and its use to conquer tuberculosis infection 4 - Function nanoparticle for overcoming resistance tuberculosis treatment 5 - Nanoparticle for diagnose tuberculosis References