دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Karim S.A.A.
سری: Sustainability: Contributions through Science and Technology
ISBN (شابک) : 9781032341323, 9781003320746
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 274
[275]
زبان: english
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Nanotechnologies in Green Chemistry and Environmental Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوتکنولوژی در شیمی سبز و پایداری محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوتکنولوژی ها بازاری با رشد سریع را نشان می دهند و این حجم منحصر به فرد، مطالعات جاری در علوم کاربردی در زمینه پایداری علم و فناوری سبز را برجسته می کند. این فصل ها شامل مدل سازی، یادگیری ماشینی، فناوری نانو، نانوسیالات، نانوسیستم ها، مواد و کاربردهای هوشمند و فناوری خورشیدی و سلول های سوختی است. نویسندگان شبیه سازی، ساخت افزودنی، یادگیری ماشین و سیستم مستقل را پوشش می دهند. جنبه های مختلف علم سبز و همچنین موضوعات بین رشته ای بین علوم بنیادی و مهندسی ارائه شده است. این کتاب برای همه فارغ التحصیلان و محققانی که در این حوزه تحقیقاتی در حال رشد سریع کار می کنند مناسب است. امکانات: ارائه آخرین تحقیقات در مورد مواد سبز و پایداری. ارائه بحث های عمیق در مورد مدل سازی و شبیه سازی با استفاده از آخرین تکنیک ها. قرار گرفتن در معرض فنی برای خوانندگان در مورد اصول ساخت افزودنی. نمونه های متعددی در مورد نانوسیالات و فناوری نانو ارائه شده است. در مورد مدلسازی کامپیوتری، ابررسانایی، نانولولهها و ساختارهای مرتبط مانند گرافن بحث میکند.
Nanotechnologies represent a fast-growing market and this unique volume highlights the current studies in applied sciences on sustainability of green science and technology. The chapters include modelling, machine learning, nanotechnology, nanofluids, nanosystems, smart materials and applications and solar and fuel cells technology. The authors cover simulation, additive manufacturing, machine learning and the autonomous system. Various aspects of green science as well as trans-disciplinary topics between fundamental science and engineering are presented.The book is suitable for all postgraduates and researchers working in this rapid growing research area. Features: Presenting latest research on green materials and sustainability. Provide in depth discussion on modeling and simulation using latest techniques. Technical exposure for the readers on additive manufacturing principles. Numerous examples on nanofluids and nano technology are presented. Discusses computer modeling, superconductivity, nanotubes and related structures such as graphene.
Cover Half Title Sustainability: Contributions through Science and Technology Series Nanotechnologies in Green Chemistry and Environmental Sustainability Copyright Contents Preface Editor Biography Contributors 1. Introduction 1.1 Introduction 1.2 Summaries Acknowledgment Reference 2. Phase Identification, Morphology, and Compressibility of Scallop Shell Powder (Amusium Pleuronectes) for Bone Implant Materials 2.1 Introduction 2.1.1 Previous Studies 2.1.2 Scallops 2.1.3 Calcium Carbonate (CaCO3) 2.1.4 Ball Milling 2.1.5 Sintering 2.2 Materials and Methods 2.3 Results and Discussion 2.3.1 Phase Characterization 2.3.2 Morphological Characterization 2.3.3 Fourier-Transform Infrared Spectroscopy (FTIR) Analysis 2.3.4 Identification of the Compressibility of Scallop Shell Powder Samples 2.3.5 Relationship Between Compressibility, Grain Size, and Porosity 2.4 Conclusion References 3. Simulation for Oil Pan Production Against Its Porosity, Shrinkage, and Niyama Criterion 3.1 Introduction 3.2 High-Pressure Die Casting 3.2.1 Hot Chamber Process 3.2.2 Cold Chamber Process 3.3 High Pressure Die Casting Parameters 3.4 Casting Simulation 3.5 Niyama Criterion 3.6 Material and Methods 3.7 Results and Discussion 3.7.1 Porosity 3.7.2 Shrinkage 3.7.3 Identification of Niyama Criterion 3.7.4 Analysis of Variance 3.8 Conclusion References 4. Analysis of the Thermophysical Properties of SAE 5W-30 Lubricants With the Addition of Al2O3, TiO2, and Hybrid Al2O3-TiO2 Nanomaterials on the Performance of Motorcycles 4.1 Introduction 4.1.1 Previous Research 4.1.2 Nanolubricant 4.1.3 Lubricant SAE 5W-30 4.1.4 Thermophysical Properties 4.2 Materials and Methods 4.3 Results and Discussion 4.3.1 Phase Characterization 4.3.2 Morphological Characterization 4.3.3 Fourier-Transform Infrared Spectroscopy (FTIR) Analysis 4.3.4 Thermophysical Properties 4.3.5 Performance Test 4.3.6 The Relationship of Nanolubricant Thermophysical Properties With Vehicle Performance 4.4 Conclusion References 5. Heat Transfer Rate and Pressure Drop Characteristics On Shell and Tube Heat Exchanger With Graphene Oxide Nanofluid 5.1 Introduction 5.2 Nanofluid 5.3 Graphene Oxide 5.4 Heat Exchanger 5.5 Base Fluids 5.6 Thermophysical Properties 5.6.1 Heat Transfer Characteristics 5.7 Results and Discussions 5.7.1 Nanoflakes Characterization 5.7.2 Thermophysical Properties 5.7.3 Heat Transfer Characterization 5.7.3.1 Reynold Number and Nusselt Number 5.7.3.2 Convection Coefficient and Overall Heat Transfer Coefficient 5.7.3.3 .TLMTD and Heat Transfer 5.7.3.4 Friction Factor and Pressure Drop 5.8 Conclusions Acknowledgment References 6. Microstructure Change of Aluminum 6061 Through Natural and Artificial Aging 6.1 Introduction: Background 6.2 Aluminum 6.2.1 Pure Aluminum 6.2.2 Aluminum Alloy 6.2.2.1 Al-Cu Alloy 6.2.2.2 Al-Mn Alloy 6.2.2.3 Al-Si Alloy 6.2.2.4 Al-Mg Alloy 6.2.2.5 Al-Mg-Si Alloy 6.3 Precipitation Hardening 6.3.1 Natural Aging 6.3.2 Artificial Aging 6.4 Microstructure Change 6.5 Conclusion Acknowledgment References 7. Characterization of Self-Healing Concrete Incorporating Plastic Waste as Partial Material Substitution 7.1 Introduction 7.2 Processing of Plastic Into Concrete Material 7.3 Feasibility of Plastic Waste On Concrete 7.4 Bio-Based Self-Healing Concrete Appearance 7.4.1 Self-Healing Concrete in Advance 7.4.2 Evaluating Techniques Used to Verify Healing Process 7.4.3 Microorganisms On Self-Healing Concrete 7.4.4 Criteria for Bacteria in Self-Healing Concrete 7.4.4.1 Bacteria Involving Nitrogen Cycles Through Urea Degradation (Ureolytic Strain) 7.4.4.2 Bacteria Involving the Nitrogen Cycle By Assimilating From Nitrates 7.4.4.3 Bacteria Involving Carbon Cycle Through Oxidation of Organic Carbon 7.5 The Potential Appearance of Incorporating Plastic Waste On Self-Healing Concrete 7.6 Future Scope of Self-Healing Concrete Incorporating Plastic Waste 7.6.1 Future Environmental Development 7.6.2 Future Construction Development 7.7 Conclusion References 8. Graded Concrete: Towards Eco-Friendly Construction By Material Optimisation 8.1 Introduction 8.1.1 Environmental Issue From Construction Sector 8.1.2 Concrete as Preferable Material 8.1.3 Effort On Material Optimisation 8.2 Concrete as Structural Materials 8.2.1 Understanding Concrete Behaviour 8.2.2 Basic Mechanism in Reinforced Concrete Beam 8.2.3 Discovering Research Gaps for Optimisation 8.3 Characteristics of Graded Concrete 8.3.1 History of Graded Concrete 8.3.2 Compression Strength of Graded Concrete 8.3.3 Modulus of Elasticity of Graded Concrete 8.4 Flexural Behaviour of Graded Concrete Beams 8.4.1 Structural Performance and Serviceability Requirement 8.4.2 Development of Graded Concrete as Reinforced Concrete Beams 8.5 Prospect of Graded Concrete On Multi-Storey Building 8.6 Conclusion References 9. Performance of Surgical Blades From Biocompatible Bulk Metallic Glasses and Metallic Glass Thin Films for Sustainable Medical Devices Improvement 9.1 Introduction: Background and Driving Forces 9.2 Potential MG Alloy Systems for Biomedical Applications 9.2.1 Fe-Based MG 9.2.2 Ti-Based MG 9.2.3 Zr-Based MG 9.3 Biocompatibility of MGs 9.4 Blade Fabrication Techniques 9.4.1 Machining the Bulk Shape of MGs 9.4.2 Surgical Blade Fabrication From BMGs 9.4.3 Hybrid Process for Surgical Blade Manufacturing From BMGs 9.4.4 Magnetron Sputtering for MGTFs Deposition 9.5 Performance of BMG and MGTF-Coated Blades 9.5.1 Blade Sharpness Index 9.5.2 Scratch Test for MGTF Adhesion Analysis 9.5.3 Blade Durability 9.6 Conclusion and Future Challenges References 10. Synthesis and Characterization of Zinc Ferrite as Nanofluid Heat Exchanger Deploying Co-Precipitation Method 10.1 Introduction 10.1.1 Previous Research 10.1.2 Heat Transfer 10.1.3 Co-Precipitation Methods 10.2 Material and Methods 10.2.1 Synthesis of Zinc Ferrite 10.2.2 Material Characterization 10.3 Results and Discussion 10.3.1 X-Ray Diffraction 10.3.2 Scanning Electron Microscopy 10.3.3 Fourier Transform Infrared 10.3.4 Heat Exchanger 10.4 Conclusion References 11. A Study of Risk Assessment in the Nanomaterials Laboratory of Mechanical Engineering Department and the Materials Physics Laboratory of Department of Physics at State University of Malang 11.1 Introduction 11.2 Methodology 11.3 Results 11.3.1 The Laboratory Users’ Knowledge of Nanosafety 11.3.2 The Condition of Nanosafety Facilities in Nanomaterials Laboratory 11.3.3 The Activities in the Nanomaterial Laboratory 11.3.4 Risk Assessment in Nanomaterials Laboratory 11.3.5 Risk Rating of Nanomaterials Laboratory of Mechanical Engineering Department 11.3.6 Risk Rating of Nanomaterials Laboratory of Physics Department 11.4 Discussion 11.4.1 The Laboratory Users’ Knowledge of Nanosafety 11.4.2 The Condition of Nanosafety Facilities in Nanomaterials Laboratory 11.4.3 The Activity in the Nanomaterials Laboratory 11.4.4 Risk Assessment in Nanomaterials Laboratory 11.4.4.1 Risk Assessment in Nanomaterials Laboratory of Mechanical Engineering Department 11.4.4.2 Risk Assessment in Nanomaterials Laboratory of Physics Department 11.4.5 Risk Control in Nanomaterials Laboratory 11.4.5.1 Elimination 11.4.5.2 Substitution 11.4.5.3 Engineering Controls 11.4.5.4 Administrative Controls 11.4.5.5 PPE 11.6 Conclusions Acknowledgments References 12. Fabrication and Characterization of Dye Sensitized Solar Cell in Various Metal Oxide Structure 12.1 Introduction 12.2 Dye-Sensitized Solar Cells 12.2.1 DSSC Structure 12.2.2 Mechanism 12.3 Titanium Dioxide 12.3.1 Materials and Methods 12.3.2 Discussion 12.3.2.1 Microstructure 12.3.2.2 Morphology 12.3.2.3 Electrochemical Properties 12.3.2.4 Electrical Properties 12.4 Zinc Oxide 12.4.1 Materials and Methods 12.4.2 Discussion 12.4.2.1 Microstructure 12.4.2.2 Morphology 12.4.2.3 Optical Properties 12.4.2.4 Electrical Properties 12.5 Conclusion Acknowledgment References 13. Characterizations of Amino-Functionalized Metal-Organic Framework Loaded With Imidazole 13.1 Introduction 13.1.1 The World of Nanomaterials 13.1.2 Green Chemistry—Perspectives Toward Sustainability 13.2 Lithium-Ion Batteries 13.3 Metal-Organic Frameworks 13.4 Methodology 13.4.1 Chemicals 13.4.2 Synthesis of IL@MOF 13.4.3 X-Ray Diffraction (XRD) 13.4.4 Scanning Electron Microscopy (SEM) 13.4.5 Fourier Transformation Infrared Spectroscopy (FTIR) 13.5 Results and Discussion 13.5.1 X-Ray Diffraction 13.5.2 Morphology Characterizations 13.5.3 Fourier Transformation Infrared Spectroscopy 13.6 Conclusion Acknowledgment References 14. Green Removal of Bisphenol A From Aqueous Media Using Zr-Based Metal-Organic Frameworks 14.1 Introduction 14.2 Bisphenol A in Wastewater 14.3 Methods for the BPA Removal in Water 14.4 Adsorption of Bisphenol A in Wastewater 14.5 Adsorbents Reported for the Removal of BPA From Water 14.6 Metal-Organic Framework (MOF) 14.7 UIO–66 (ZR) Metal-Organic Compound in BPA Removal in Wastewater 14.8 Conclusion Acknowledgement References Index