ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanotechnologies in Green Chemistry and Environmental Sustainability

دانلود کتاب نانوتکنولوژی در شیمی سبز و پایداری محیطی

Nanotechnologies in Green Chemistry and Environmental Sustainability

مشخصات کتاب

Nanotechnologies in Green Chemistry and Environmental Sustainability

ویرایش:  
نویسندگان:   
سری: Sustainability: Contributions through Science and Technology 
ISBN (شابک) : 9781032341323, 9781003320746 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 274
[275] 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 35,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nanotechnologies in Green Chemistry and Environmental Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوتکنولوژی در شیمی سبز و پایداری محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوتکنولوژی در شیمی سبز و پایداری محیطی

نانوتکنولوژی ها بازاری با رشد سریع را نشان می دهند و این حجم منحصر به فرد، مطالعات جاری در علوم کاربردی در زمینه پایداری علم و فناوری سبز را برجسته می کند. این فصل ها شامل مدل سازی، یادگیری ماشینی، فناوری نانو، نانوسیالات، نانوسیستم ها، مواد و کاربردهای هوشمند و فناوری خورشیدی و سلول های سوختی است. نویسندگان شبیه سازی، ساخت افزودنی، یادگیری ماشین و سیستم مستقل را پوشش می دهند. جنبه های مختلف علم سبز و همچنین موضوعات بین رشته ای بین علوم بنیادی و مهندسی ارائه شده است. این کتاب برای همه فارغ التحصیلان و محققانی که در این حوزه تحقیقاتی در حال رشد سریع کار می کنند مناسب است. امکانات: ارائه آخرین تحقیقات در مورد مواد سبز و پایداری. ارائه بحث های عمیق در مورد مدل سازی و شبیه سازی با استفاده از آخرین تکنیک ها. قرار گرفتن در معرض فنی برای خوانندگان در مورد اصول ساخت افزودنی. نمونه های متعددی در مورد نانوسیالات و فناوری نانو ارائه شده است. در مورد مدل‌سازی کامپیوتری، ابررسانایی، نانولوله‌ها و ساختارهای مرتبط مانند گرافن بحث می‌کند.


توضیحاتی درمورد کتاب به خارجی

Nanotechnologies represent a fast-growing market and this unique volume highlights the current studies in applied sciences on sustainability of green science and technology. The chapters include modelling, machine learning, nanotechnology, nanofluids, nanosystems, smart materials and applications and solar and fuel cells technology. The authors cover simulation, additive manufacturing, machine learning and the autonomous system. Various aspects of green science as well as trans-disciplinary topics between fundamental science and engineering are presented.The book is suitable for all postgraduates and researchers working in this rapid growing research area. Features: Presenting latest research on green materials and sustainability. Provide in depth discussion on modeling and simulation using latest techniques. Technical exposure for the readers on additive manufacturing principles. Numerous examples on nanofluids and nano technology are presented. Discusses computer modeling, superconductivity, nanotubes and related structures such as graphene.



فهرست مطالب

Cover
Half Title
Sustainability: Contributions through Science and Technology Series
Nanotechnologies in Green Chemistry and Environmental Sustainability
Copyright
Contents
Preface
Editor Biography
Contributors
1. Introduction
	1.1 Introduction
	1.2 Summaries
	Acknowledgment
	Reference
2. Phase Identification, Morphology, and Compressibility of Scallop Shell Powder (Amusium Pleuronectes) for Bone Implant Materials
	2.1 Introduction
		2.1.1 Previous Studies
		2.1.2 Scallops
		2.1.3 Calcium Carbonate (CaCO3)
		2.1.4 Ball Milling
		2.1.5 Sintering
	2.2 Materials and Methods
	2.3 Results and Discussion
		2.3.1 Phase Characterization
		2.3.2 Morphological Characterization
		2.3.3 Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
		2.3.4 Identification of the Compressibility of Scallop Shell Powder Samples
		2.3.5 Relationship Between Compressibility, Grain Size, and Porosity
	2.4 Conclusion
	References
3. Simulation for Oil Pan Production Against Its Porosity, Shrinkage, and Niyama Criterion
	3.1 Introduction
	3.2 High-Pressure Die Casting
		3.2.1 Hot Chamber Process
		3.2.2 Cold Chamber Process
	3.3 High Pressure Die Casting Parameters
	3.4 Casting Simulation
	3.5 Niyama Criterion
	3.6 Material and Methods
	3.7 Results and Discussion
		3.7.1 Porosity
		3.7.2 Shrinkage
		3.7.3 Identification of Niyama Criterion
		3.7.4 Analysis of Variance
	3.8 Conclusion
	References
4. Analysis of the Thermophysical Properties of SAE 5W-30 Lubricants With the Addition of Al2O3, TiO2, and Hybrid Al2O3-TiO2 Nanomaterials on the Performance of Motorcycles
	4.1 Introduction
		4.1.1 Previous Research
		4.1.2 Nanolubricant
		4.1.3 Lubricant SAE 5W-30
		4.1.4 Thermophysical Properties
	4.2 Materials and Methods
	4.3 Results and Discussion
		4.3.1 Phase Characterization
		4.3.2 Morphological Characterization
		4.3.3 Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
		4.3.4 Thermophysical Properties
		4.3.5 Performance Test
		4.3.6 The Relationship of Nanolubricant Thermophysical Properties With Vehicle Performance
	4.4 Conclusion
	References
5. Heat Transfer Rate and Pressure Drop Characteristics On Shell and Tube Heat Exchanger With Graphene Oxide Nanofluid
	5.1 Introduction
	5.2 Nanofluid
	5.3 Graphene Oxide
	5.4 Heat Exchanger
	5.5 Base Fluids
	5.6 Thermophysical Properties
		5.6.1 Heat Transfer Characteristics
	5.7 Results and Discussions
		5.7.1 Nanoflakes Characterization
		5.7.2 Thermophysical Properties
		5.7.3 Heat Transfer Characterization
			5.7.3.1 Reynold Number and Nusselt Number
			5.7.3.2 Convection Coefficient and Overall Heat Transfer Coefficient
			5.7.3.3 .TLMTD and Heat Transfer
			5.7.3.4 Friction Factor and Pressure Drop
	5.8 Conclusions
	Acknowledgment
	References
6. Microstructure Change of Aluminum 6061 Through Natural and Artificial Aging
	6.1 Introduction: Background
	6.2 Aluminum
		6.2.1 Pure Aluminum
		6.2.2 Aluminum Alloy
			6.2.2.1 Al-Cu Alloy
			6.2.2.2 Al-Mn Alloy
			6.2.2.3 Al-Si Alloy
			6.2.2.4 Al-Mg Alloy
			6.2.2.5 Al-Mg-Si Alloy
	6.3 Precipitation Hardening
		6.3.1 Natural Aging
		6.3.2 Artificial Aging
	6.4 Microstructure Change
	6.5 Conclusion
	Acknowledgment
	References
7. Characterization of Self-Healing Concrete Incorporating Plastic Waste as Partial Material Substitution
	7.1 Introduction
	7.2 Processing of Plastic Into Concrete Material
	7.3 Feasibility of Plastic Waste On Concrete
	7.4 Bio-Based Self-Healing Concrete Appearance
		7.4.1 Self-Healing Concrete in Advance
		7.4.2 Evaluating Techniques Used to Verify Healing Process
		7.4.3 Microorganisms On Self-Healing Concrete
		7.4.4 Criteria for Bacteria in Self-Healing Concrete
			7.4.4.1 Bacteria Involving Nitrogen Cycles Through Urea Degradation (Ureolytic Strain)
			7.4.4.2 Bacteria Involving the Nitrogen Cycle By Assimilating From Nitrates
			7.4.4.3 Bacteria Involving Carbon Cycle Through Oxidation of Organic Carbon
	7.5 The Potential Appearance of Incorporating Plastic Waste On Self-Healing Concrete
	7.6 Future Scope of Self-Healing Concrete Incorporating Plastic Waste
		7.6.1 Future Environmental Development
		7.6.2 Future Construction Development
	7.7 Conclusion
	References
8. Graded Concrete: Towards Eco-Friendly Construction By Material Optimisation
	8.1 Introduction
		8.1.1 Environmental Issue From Construction Sector
		8.1.2 Concrete as Preferable Material
		8.1.3 Effort On Material Optimisation
	8.2 Concrete as Structural Materials
		8.2.1 Understanding Concrete Behaviour
		8.2.2 Basic Mechanism in Reinforced Concrete Beam
		8.2.3 Discovering Research Gaps for Optimisation
	8.3 Characteristics of Graded Concrete
		8.3.1 History of Graded Concrete
		8.3.2 Compression Strength of Graded Concrete
		8.3.3 Modulus of Elasticity of Graded Concrete
	8.4 Flexural Behaviour of Graded Concrete Beams
		8.4.1 Structural Performance and Serviceability Requirement
		8.4.2 Development of Graded Concrete as Reinforced Concrete Beams
	8.5 Prospect of Graded Concrete On Multi-Storey Building
	8.6 Conclusion
	References
9. Performance of Surgical Blades From Biocompatible Bulk Metallic Glasses and Metallic Glass Thin Films for Sustainable Medical Devices Improvement
	9.1 Introduction: Background and Driving Forces
	9.2 Potential MG Alloy Systems for Biomedical Applications
		9.2.1 Fe-Based MG
		9.2.2 Ti-Based MG
		9.2.3 Zr-Based MG
	9.3 Biocompatibility of MGs
	9.4 Blade Fabrication Techniques
		9.4.1 Machining the Bulk Shape of MGs
		9.4.2 Surgical Blade Fabrication From BMGs
		9.4.3 Hybrid Process for Surgical Blade Manufacturing From BMGs
		9.4.4 Magnetron Sputtering for MGTFs Deposition
	9.5 Performance of BMG and MGTF-Coated Blades
		9.5.1 Blade Sharpness Index
		9.5.2 Scratch Test for MGTF Adhesion Analysis
		9.5.3 Blade Durability
	9.6 Conclusion and Future Challenges
	References
10. Synthesis and Characterization of Zinc Ferrite as Nanofluid Heat Exchanger Deploying Co-Precipitation Method
	10.1 Introduction
		10.1.1 Previous Research
		10.1.2 Heat Transfer
		10.1.3 Co-Precipitation Methods
	10.2 Material and Methods
		10.2.1 Synthesis of Zinc Ferrite
		10.2.2 Material Characterization
	10.3 Results and Discussion
		10.3.1 X-Ray Diffraction
		10.3.2 Scanning Electron Microscopy
		10.3.3 Fourier Transform Infrared
		10.3.4 Heat Exchanger
	10.4 Conclusion
	References
11. A Study of Risk Assessment in the Nanomaterials Laboratory of Mechanical Engineering Department and the Materials Physics Laboratory of Department of Physics at State University of Malang
	11.1 Introduction
	11.2 Methodology
	11.3 Results
		11.3.1 The Laboratory Users’ Knowledge of Nanosafety
		11.3.2 The Condition of Nanosafety Facilities in Nanomaterials Laboratory
		11.3.3 The Activities in the Nanomaterial Laboratory
		11.3.4 Risk Assessment in Nanomaterials Laboratory
		11.3.5 Risk Rating of Nanomaterials Laboratory of Mechanical Engineering Department
		11.3.6 Risk Rating of Nanomaterials Laboratory of Physics Department
	11.4 Discussion
		11.4.1 The Laboratory Users’ Knowledge of Nanosafety
		11.4.2 The Condition of Nanosafety Facilities in Nanomaterials Laboratory
		11.4.3 The Activity in the Nanomaterials Laboratory
		11.4.4 Risk Assessment in Nanomaterials Laboratory
			11.4.4.1 Risk Assessment in Nanomaterials Laboratory of Mechanical Engineering Department
			11.4.4.2 Risk Assessment in Nanomaterials Laboratory of Physics Department
		11.4.5 Risk Control in Nanomaterials Laboratory
			11.4.5.1 Elimination
			11.4.5.2 Substitution
			11.4.5.3 Engineering Controls
			11.4.5.4 Administrative Controls
			11.4.5.5 PPE
	11.6 Conclusions
	Acknowledgments
	References
12. Fabrication and Characterization of Dye Sensitized Solar Cell in Various Metal Oxide Structure
	12.1 Introduction
	12.2 Dye-Sensitized Solar Cells
		12.2.1 DSSC Structure
		12.2.2 Mechanism
	12.3 Titanium Dioxide
		12.3.1 Materials and Methods
		12.3.2 Discussion
			12.3.2.1 Microstructure
			12.3.2.2 Morphology
			12.3.2.3 Electrochemical Properties
			12.3.2.4 Electrical Properties
	12.4 Zinc Oxide
		12.4.1 Materials and Methods
		12.4.2 Discussion
			12.4.2.1 Microstructure
			12.4.2.2 Morphology
			12.4.2.3 Optical Properties
			12.4.2.4 Electrical Properties
	12.5 Conclusion
	Acknowledgment
	References
13. Characterizations of Amino-Functionalized Metal-Organic Framework Loaded With Imidazole
	13.1 Introduction
		13.1.1 The World of Nanomaterials
		13.1.2 Green Chemistry—Perspectives Toward Sustainability
	13.2 Lithium-Ion Batteries
	13.3 Metal-Organic Frameworks
	13.4 Methodology
		13.4.1 Chemicals
		13.4.2 Synthesis of IL@MOF
		13.4.3 X-Ray Diffraction (XRD)
		13.4.4 Scanning Electron Microscopy (SEM)
		13.4.5 Fourier Transformation Infrared Spectroscopy (FTIR)
	13.5 Results and Discussion
		13.5.1 X-Ray Diffraction
		13.5.2 Morphology Characterizations
		13.5.3 Fourier Transformation Infrared Spectroscopy
	13.6 Conclusion
	Acknowledgment
	References
14. Green Removal of Bisphenol A From Aqueous Media Using Zr-Based Metal-Organic Frameworks
	14.1 Introduction
	14.2 Bisphenol A in Wastewater
	14.3 Methods for the BPA Removal in Water
	14.4 Adsorption of Bisphenol A in Wastewater
	14.5 Adsorbents Reported for the Removal of BPA From Water
	14.6 Metal-Organic Framework (MOF)
	14.7 UIO–66 (ZR) Metal-Organic Compound in BPA Removal in Wastewater
	14.8 Conclusion
	Acknowledgement
	References
Index




نظرات کاربران