ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanostructured Magnetic Materials: Functionalization and Diverse Applications

دانلود کتاب مواد مغناطیسی نانوساختار: عملکرد و کاربردهای متنوع

Nanostructured Magnetic Materials: Functionalization and Diverse Applications

مشخصات کتاب

Nanostructured Magnetic Materials: Functionalization and Diverse Applications

ویرایش:  
نویسندگان: , , , ,   
سری: Emerging Materials and Technologies 
ISBN (شابک) : 9781032369822 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: 296
[297] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 51,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nanostructured Magnetic Materials: Functionalization and Diverse Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد مغناطیسی نانوساختار: عملکرد و کاربردهای متنوع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Acknowledgments
Contributors
Chapter 1 Functionalized Magnetic Nanomaterials and their Applications
	1.1 Magnetic Nanomaterials
	1.2 Synthesis of Magnetic Nanomaterials
		1.2.1 Coprecipitation Method
		1.2.2 Chemical Oxidation Method
		1.2.3 Polyol Process
	1.3 Functionalization of Magnetic Nanomaterials
	1.4 Applications of Functionalized Magnetic Nanomaterials
	1.5 From Fundamentals of Surface Characterization Techniques Into Diverse Applications
	1.6 Summary, Scope, and Future Directions
	Acknowledgments
	References
Chapter 2 Surface Characterization Techniques
	2.1 Introduction to Surface Characterization Techniques
	2.2 Chemical Characterizations
		2.2.1 Definition of Chemical Characterizations
		2.2.2 IR Spectroscopy
			2.2.2.1 Mid-IR Spectroscopy
			2.2.2.2 Mathematical Analysis
			2.2.2.3 Fourier Transform (FTIR) Spectroscopy
		2.2.3 Raman Spectroscopy
		2.2.4 X-Ray Photoelectron Spectroscopy
			2.2.4.1 XPS Acquisition Modes and Some Examples
		2.2.5 Preparation of Samples for Chemical Characterizations
	2.3 Morphological Characterization
		2.3.1 Definition of Morphological Characterization
		2.3.2 Scanning Probe Microscopy
		2.3.3 Scanning Tunneling Microscopy
		2.3.4 Scanning Electron Microscopy (SEM)
		2.3.5 Energy Dispersive X-Ray Spectroscopy (EDS)
	2.4 Electrical Characterizations
		2.4.1 Definition of Electrical Characterizations
		2.4.2 Hall Effect
		2.4.3 Surface Resistance
		2.4.4 I–V Measurements
		2.4.5 Preparation of Samples for Electrical Characterizations
	2.5 Summary and Perspectives
	References
Chapter 3 Core–Shell Magnetic Nanostructures
	3.1 Introduction
	3.2 Classification of Core–Shell Nanostructures
		3.2.1 Organics
		3.2.2 Inorganics
		3.2.3 Combinations of Core–Shell Nanostructures
			3.2.3.1 Organic–Organic Core–Shell Nanoparticles
			3.2.3.2 Inorganic–Inorganic Core–Shell Nanostructures
			3.2.3.3 Inorganic–Organic Core–Shell Nanostructures
			3.2.3.4 Organic–Inorganic Core–Shell Nanostructures
		3.2.4 General Mechanism for the Synthesis of Core–Shell Nanostructures
	3.3 Synthesis of Magnetic Core–Shell Nanostructures
		3.3.1 Microemulsion Method
		3.3.2 Thermal Decomposition Method
		3.3.3 Coprecipitation Method
		3.3.4 Hydrothermal Method
	3.4 Tailoring the Properties of Magnetic Core–Shell Nanostructures
	3.5 Applications of Magnetic Core–shell Nanostructures
		3.5.1 Biomedical Applications
			3.5.1.1 Drug Delivery Nanocarriers
			3.5.1.2 Magnetic Resonance Imaging (MRI)
			3.5.1.3 Cancer Therapy
		3.5.2 Electrochemical Applications
		3.5.3 Spintronics
		3.5.4 Magnetic Nanoparticles Functionalization Strategies
	3.6 Conclusions and Future Outlook
	References
Chapter 4 Functionalized Magnetic Nanoparticles for Biomedical Applications (Treatment, Imaging, and Separation and Detection Applications)
	4.1 Introduction
	4.2 Functionalization of Magnetic Nanoparticles for Biomedical Applications
	4.3 Biomedical Applications of Functionalized Magnetic Nanoparticles
		4.3.1 Treatment Applications
		4.3.2 Imaging Applications
		4.3.3 Separation and Detection Applications
	References
Chapter 5 Induction of Physicochemical Effects From Functional Magnetic Nanoparticles in Biological Media and their Potential for Alternative Medical Therapies
	5.1 Introduction
	5.2 Special Features of MNPs
		5.2.1 Quantum Size Effect
		5.2.2 Surface Effects
		5.2.3 Small Size Effect
	5.3 Synthesis of Magnetic Nanoparticles
	5.4 Functionalization of Magnetic Nanoparticles
	5.5 Applications of Magnetic Nanoparticles
		5.5.1 MNPs in Drug Formulation for Drug Delivery
		5.5.2 MNPs for Chemotherapy
		5.5.3 Bioimaging
		5.5.4 Magnetic Hyperthermia
		5.5.5 Disease Therapy
		5.5.6 Tissue Engineering and Regenerative Medicine
		5.5.7 Biosensors
	5.6 Conclusion
	References
Chapter 6 Magnetic Nanomaterials for Microwave Absorption for Health, Electronic Safety, and Military Applications
	6.1 Introduction
	6.2 Electromagnetic Spectrum
	6.3 Microwave Absorption Theory
		6.3.1 Dielectric Loss
		6.3.2 Magnetic Loss
		6.3.3 Influence of Size Factor in Microwave Absorption
	6.4 Magnetic Nanosized Composite Materials for Microwave Absorption
		6.4.1 Carbon Magnetic Materials
			6.4.1.1 Carbon Fiber Composites
			6.4.1.2 Magnetic Graphene
	6.5 Nanostructured Metamaterials
	6.6 Applications
	6.7 Concluding Remarks
	Acknowledgments
	References
Chapter 7 Functionalized Magnetic Nanoparticles for Photocatalytic Applications
	7.1 Introduction
	7.2 Photocatalytic Degradation (PCD)
		7.2.1 Basic Principle of a Photocatalytic Oxidation Process
	7.3 Why Magnetic NPs Are So Important for PCD?
	7.4 Photocatalytic Activity of Functionalized Magnetic Iron Oxide at Nanoscale
	7.5 Conclusions and Future Prospects
	References
Chapter 8 Recent Progress in Green Synthesis of Functionalized Magnetic Nanoparticles as Retrievable Photocatalyst
	8.1 Introduction
	8.2 Green Synthesis
	8.3 Magnetic Nanomaterial as Photocatalyst
	8.4 Green Synthesis of Magnetic Nanoparticles
		8.4.1 Biosynthesis Method
		8.4.2 Chemical Reduction and Coprecipitation Method
		8.4.3 Sol-Gel Method
		8.4.4 Hydrothermal Method
		8.4.5 Combustion Method
		8.4.6 Microwave-Assisted Method
		8.4.7 Sonication Method
	8.5 Functionalization of Magnetic Nanomaterials
		8.5.1 Metal Nanocomposite
		8.5.2 Metal Oxide Nanocomposite
		8.5.3 Carbon-Based Nanocomposite
	8.6 Retriable Photocatalyst for Degradation of Organic Pollutant
	8.7 Future Scope
	8.8 Conclusion
	References
Chapter 9 Phytogenic Magnetic Nanoparticles (PMNPs): Synthesis, Properties, Characterization, and its Potential Application in Waste Water Treatment
	9.1 Introduction
	9.2 Waste Water Treatment Strategies
	9.3 Nanotechnology in Wastewater Treatment
	9.4 Types of Nanomaterials in Wastewater Treatment
	9.5 Zero-Valent Metal Nanoparticles
	9.6 Metal Oxides
	9.7 Carbon Nanomaterials
	9.8 Hybrid Nanomaterials
	9.9 Magnetic Nanoparticle Composition
	9.10 Magnetism
	9.11 Superparamagnetism
	9.12 Approaches and Techniques in Fabrication of Magnetic Nanoparticles
	9.13 Coprecipitation
	9.14 Microemulsion
	9.15 Polyol Method
	9.16 Hydrothermal Method
	9.17 Chemical Vapor Deposition (CVD)
	9.18 Spray Pyrolysis and Sonochemical Method
	9.19 Phytofabrication and Characterization of PMNPs
	9.20 Factors Influence the Phytofabrication of MNPs
	9.21 Influence of pH
	9.22 Reactant Concentration
	9.23 Incubation Time
	9.24 Effect of Metal Ion Concentration
	9.25 Reaction Temperature
	9.26 Magnetic Nanoparticle Stabilization
		9.26.1 Organic Coatings
		9.26.2 Inorganic Coating
		9.26.3 Organic and Inorganic Combinations
	9.27 Strategies to Functionalization
	9.28 Application of Magnetic Nanoparticle
	9.29 Role of PMNPS in the Removal of Pollutants
	9.30 Disinfection
	9.31 Conclusion
	References
Chapter 10 Magnetic Nanomaterials for Solar Energy Conversion Applications
	10.1 Functional Nanomaterials and Their Importance
	10.2 Functional Nanomaterials in Solar Cells
	10.3 Solar Cells
		10.3.1 Silicon Solar Cells
		10.3.2 Thin Film Solar Cells
		10.3.3 Third-Generation Solar Cells
		10.3.4 Fourth-Generation Solar Cells
	10.4 Magnetic Nanomaterials
	10.5 Properties of Magnetic Nanomaterials
	10.6 Magnetic Nanomaterials for Solar Energy Conversion
		10.6.1 Fe[sub(3)]O[sub(4)] in Bulk Heterojunction (BHJ) Solar Cells
		10.6.2 Role of Magnetic Nanoparticles in DSSC
		10.6.3 Fe[sub(2)]O[sub(3)] Nanoparticles in Perovskite Solar Cells
	10.7 Conclusion and Future Outlook
	References
Chapter 11 Functionalized Magnetic Nanoparticles for Energy Storage Applications
	11.1 Introduction
	11.2 Synthesis and Surface Modification of MNPs
		11.2.1 Physical Methods
			11.2.1.1 Mechanical Ball Milling Method
			11.2.1.2 Laser Evaporation
			11.2.1.3 Electron Beam Lithography
			11.2.1.4 Gas-Phase Deposition
			11.2.1.5 Wire Explosion Method
		11.2.2 Chemical Methods
			11.2.2.1 Coprecipitation Method
			11.2.2.2 Thermal Decomposition
			11.2.2.3 Microemulsion Synthesis
			11.2.2.4 Hydrothermal Method
			11.2.2.5 Sol-Gel Method
			11.2.2.6 Electrochemical Deposition
		11.2.3 Biological Method
		11.2.4 Functionalization of the MNPs Surface
			11.2.4.1 Functionalization with Polymer
			11.2.4.2 Small Molecule Functionalization
			11.2.4.3 Functionalization with Surfactants
			11.2.4.4 Functionalization with Transition Metal Oxides/Hydroxide/Sulfides
			11.2.4.5 Functionalization with Silicon Dioxide
			11.2.4.6 Functionalization with Carbonaceous Materials
	11.3 Various MNPs in Electrochemical Energy Storage
		11.3.1 Metal Ferrite Nanoparticles
			11.3.1.1 Cobalt Ferrite (CoFe[sub(2)]O[sub(4)])
			11.3.1.2 Nickel Ferrite (NiFe[sub(2)]O[sub(4)])
			11.3.1.3 Manganese Ferrite (MnFe[sub(2)]O[sub(4)])
			11.3.1.4 Copper Ferrite (CuFe[sub(2)]O[sub(4)])
		11.3.2 The Effect of External Magnetic Field
		11.3.3 Spinel Oxide Nanoparticles
			11.3.3.1 Iron Oxide (Fe[sub(3)]O[sub(4)])
			11.3.3.2 Cobalt Oxide (Co[sub(3)]O[sub(4)])
			11.3.3.3 Manganese Oxide (Mn[sub(3)]O[sub(4)])
			11.3.3.4 Nickel Manganese Oxide (NiMn[sub(2)]O[sub(4)]
	11.4 Correlation Between the Morphology, Size of the MNPs with Their Magnetic and Electrochemical Properties
	11.5 Conclusion and Future Outlook
	Acknowledgments
	References
Chapter 12 Functionalized Magnetic Nanomaterials for Data Storage Applications
	12.1 Introduction
		12.1.1 Magnetic Data Storage
		12.1.2 Utilization of Magnetic Nanomaterials
		12.1.3 Magnetic Data Storage Mechanism
	12.2 Synthesis/Preparation of Magnetic Nanomaterials
		12.2.1 Thin-Film Techniques
		12.2.2 Chemical Synthesis Methods
		12.2.3 Other Methods
	12.3 Functionalization of Magnetic Nanomaterials
	12.4 Summary and Scope
	References
Index




نظرات کاربران