ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

دانلود کتاب مواد نانوساختار، عملکردی و انعطاف پذیر برای سیستم های تبدیل و ذخیره انرژی

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

مشخصات کتاب

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128195525, 9780128195529 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 526 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد نانوساختار، عملکردی و انعطاف پذیر برای سیستم های تبدیل و ذخیره انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد نانوساختار، عملکردی و انعطاف پذیر برای سیستم های تبدیل و ذخیره انرژی



مواد نانوساختار، عملکردی و انعطاف‌پذیر برای سیستم‌های تبدیل و ذخیره‌سازی انرژی پیشرفت‌ها را در زمینه مواد کاربردی نانوساختار برای تبدیل و ذخیره‌سازی انرژی جمع‌آوری و بررسی می‌کند. مشارکت‌های گروه‌های تحقیقاتی پیشرو درگیر در تحقیقات بین‌رشته‌ای در زمینه‌های شیمی، فیزیک و علم مواد و مهندسی ارائه شده است. فصل های مربوط به توسعه مواد نانوساختار برای فرآیندهای تبدیل انرژی، از جمله کاهش اکسیژن، اکسیداسیون متانول، تکامل اکسیژن، تکامل هیدروژن، اکسیداسیون اسید فرمیک و سلول های خورشیدی مورد بحث قرار می گیرد. کار با نگاهی به کاربرد مواد کاربردی نانوساختار در سیستم ذخیره‌سازی انرژی، مانند ابرخازن‌ها و باتری‌ها، به پایان می‌رسد.

این کتاب با تیم بین‌المللی متشکل از همکاران متخصص، ابزاری ضروری برای هر کسی خواهد بود که درگیر است. در زمینه تبدیل و ذخیره انرژی، از جمله مهندسان مواد، دانشمندان و دانشگاهیان.


توضیحاتی درمورد کتاب به خارجی

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in  energy storage system, such as supercapacitors and batteries.

With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.



فهرست مطالب

Cover
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems
Copyright
Contributors
1 - Basic principles in energy conversion and storage
	1. Introduction
	2. Lithium batteries
		2.1 Battery principle and basics
	3. Supercapacitors
		3.1 Working principle of a supercapacitor
	4. Dye-sensitized solar cells
		4.1 Major components of dye-sensitized solar cells
		4.2 Working principles of dye-sensitized solar cells
	5. Hydrogen production by photocatalytic water splitting
	6. Fuel cell
	7. Conclusions
	Acknowledgments
	References
2 - Low-dimensional carbon-based nanomaterials for energy conversion and storage applications
	1. Introduction
	2. Synthetic aspects of carbon-based nanomaterials
		2.1 Synthesis of carbon nanodots
		2.2 Graphene preparation
		2.3 Synthesizing graphene quantum dots
	3. Energy characteristics of carbon nanodots
	4. Potential properties of graphene
	5. Carbon nanotubes in renewable energy applications
		5.1 Hydrogen storage
		5.2 Solar cells
		5.3 Energy conversion using carbon nanotubes
		5.4 Carbon nanotubes in energy storage
			5.4.1 Batteries
			5.4.2 Supercapacitors
	6. Applications of carbon nanodots in energy conversion and storage
		6.1 Application in supercapacitors
		6.2 Application in Li-ion batteries
		6.3 Application in solar cells
		6.4 Application in light-emitting diodes
	7. Applications of graphene in energy conversion and storage
		7.1 Solar cells
		7.2 Battery
		7.3 Fuel cells
		7.4 Supercapacitors
		7.5 Hydrogen storage devices
	8. Applications of graphene quantum dots related to energy conversion and storage
		8.1 Supercapacitors
		8.2 Batteries
		8.3 Photovoltaic cells/solar cells
		8.4 Fuel cells
	9. Summary and future aspects
	Acknowledgment
	References
3 - Nanostructured bifunctional electrocatalyst support materials for unitized regenerative fuel cells
	1. Introduction
	2. Unitized regenerative fuel cell system
	3. Role of electrocatalysts and electrocatalyst support materials
	4. Types of electrocatalysts support materials and their performance in a URFC
		4.1 Carbon structures as electrocatalyst supports
		4.2 Unsupported and IrO2-supported electrocatalysts
		4.3 Ti-based compounds as electrocatalyst supports
		4.4 Sb-doped SnO2 and SiO2-SO3H electrocatalyst support
	5. Concluding remarks
	Acknowledgments
	References
4 - Polymeric nanomaterials in fuel cell applications
	1. Introduction
	2. Polymeric nanomaterials in microbial fuel cells
	3. Polymeric nanomaterials in hydrogen fuel cells
	4. Polymeric nanomaterials in direct methanol fuel cells
	5. Conclusions and future directions
	References
5 - Nanocarbon: lost cost materials for perovskite solar cells
	1. Introduction
	2. Inorganic perovskite layers
	3. Carbon materials for low-cost perovskite solar cells
	4. Hole transport membrane
	5. HTM-free cells
	6. Electron transport membranes
	7. ETM-free cells
	8. Fullerene and its derivatives
	9. Graphene and its derivatives
	10. Conductive carbon
	11. Embedment C-PSCs
		11.1 Carbon nanoparticles
	12. Conclusion and future prospects
	References
6 - Recent advances in synthesis, surface chemistry of cesium lead-free halide perovskite nanocrystals and their potential appl ...
	1. Perovskites-an introduction
	2. Introduction of cesium lead halide perovskite nanocrystals
	3. Emergence of cesium lead-free halide perovskite nanomaterials
	4. General approaches in synthesis of cesium metal halide perovskite NCs and surface chemistry of binary solvent mixture
	5. Development in synthesis and surface chemistry of cesium lead-free halide perovskite nanocrystals
		5.1 Cesium tin halide perovskite nanocrystals (CsSnX3, Cs2SnX6 where X=Cl, Br, I)
		5.2 Cesium bismuth halide perovskite nanocrystals (Cs3Bi2X9 X=Cl, Br, I)
		5.3 Cesium lead-free double perovskite nanocrystals (Cs2AgMX6 where M=Bi, Sb, In and X=Cl, Br, I)
		5.4 Cesium stibium halide perovskite nanocrystals (Cs3Sb2X9 where X=Cl, Br, I)
	6. Miscellaneous
	7. Applications of cesium lead-free halide perovskite nanocrystals
	8. Conclusion and future perspectives
	ACKNOWLEDGMENTS
	References
7 - Hierarchically nanostructured functional materials for artificial photosynthesis
	1. Introduction
	2. Different types of hierarchical nanomaterials for artificial photosynthesis
		2.1 Fiber-like hierarchical nanomaterials
		2.2 Carbon dioxide reduction into CH4 and CO using GaN nanowire
		2.3 Hierarchical nanobox-based nanomaterials
		2.4 Hierarchical ZnO-based hollow nanostructures
		2.5 Titanium oxide nanotubes as a photoreduction material
		2.6 Silver nanowire as an artificial photocatalyst
		2.7 Hierarchical based metal organic nanoflowers and nanorods
	3. Application of hierarchal photocatalytic nanomaterials
		3.1 Water splitting
		3.2 Hierarchical nanomaterials for chemical fuels
		3.3 Hierarchal structures in biofuel cells as light-harvesting systems
		3.4 Hierarchical nanostructures for the production of biohydrogen
		3.5 Homogeneous artificial photosynthesis system
			3.5.1 Heterogeneous artificial photosynthesis system
		3.6 Photosensitizers in artificial photosynthesis
			3.6.1 Photosensitizers in water oxidation
			3.6.2 Photoelectrochemical water splitting
	4. Concluding remarks and future prospects
	Acknowledgments
	References
8 - New-generation titania-based catalysts for photocatalytic hydrogen generation
	1. Introduction
	2. Basic principle of photoelectrochemical water splitting
	3. Material selection for photoelectrochemical water splitting
	4. TiO2 photocatalyst for photoelectrochemical water splitting
		4.1 TiO2 nanotube arrays and anodization method
		4.2 The four synthesis generation of TiO2 nanotubes
	5. Formation mechanism of TiO2 nanotube arrays
		5.1 Mechanism of formation of TiO2 nanotubes
	6. Tuning the photocatalytic activity of TiO2 into the visible light region
	7. WO3-incorporated TiO2 photocatalyst
	8. Preparation of WO3-TiO2 photocatalyst
	9. Water photoelectrolysis using WO3-TiO2 photocatalyst
	10. Conclusions
	Acknowledgment
	References
9 - Graphitic carbon nitride-based nanocomposite materials for photocatalytic hydrogen generation
	1. Introduction
	2. Road map of g-C3N4 as efficient photocatalyst for photocatalytic hydrogen generation
		2.1 Electronic structure and physicochemical properties of g-C3N4 photocatalyst
	3. Synthesis methods of g-C3N4 photocatalyst
		3.1 Thermal heating of carbon-rich polymers
		3.2 Template-based method
		3.3 Sol-gel method
	4. Design of various structures of g-C3N4 for photocatalytic hydrogen generation
		4.1 Bulk g-C3N4 for photocatalytic hydrogen generation
		4.2 g-C3N4 nanosheets for photocatalytic hydrogen generation
		4.3 Porous g-C3N4 for photocatalytic hydrogen generation
		4.4 g-C3N4 nanotubes for photocatalytic hydrogen generation
	5. Composites of g-C3N4 for improved photocatalytic hydrogen generation
		5.1 Metal/g-C3N4 composites for efficient hydrogen generation
		5.2 Metal oxide/g-C3N4 composites for efficient hydrogen generation
		5.3 Metal sulfide/g-C3N4 composites for efficient hydrogen generation
		5.4 Metal organic framework/g-C3N4 composites for efficient hydrogen generation
		5.5 Carbon-based/g-C3N4 composites for efficient hydrogen generation
	6. Conclusion and outlook
	Acknowledgments
	References
10 - Nanostructured materials for photocatalytic energy conversion
	1. Introduction
	2. Hydrogen production from sunlight converting techniques
		2.1 Photovoltaic technology
		2.2 Wet-chemical photosynthesis
	3. Photoelectrolysis for the generation of hydrogen by TiO2 nanohybrid
	4. Evaluation of hydrogen by photoelectrochemical activity using nanomaterials
	5. Carbon nanotube/TiO2 nanocomposite for hydrogen production
	6. Induced photocatalysis over Fe2O3 for production of hydrogen from water splitting
	7. Evolution of hydrogen from water photocatalytic splitting using graphene/TiO2
	8. Visible light photocatalytic hydrogen production by Ti3C2 MXene cocatalyst with metal sulfide
	9. Hydrogen gas for transportation and sustainable power generation
	10. Tungsten-doped Ni-Zn nanoferrites for the recovery time for hydrogen gas sensing application
	11. Summary
	Acknowledgments
	References
11 - Graphene-based composite materials for flexible supercapacitors
	1. Introduction
	2. Energy storage devices: an overview
	3. Flexible supercapacitors: device structure and fabrication
	4. Graphene composite materials-based flexible supercapacitor devices
		4.1 Pure graphene-based flexible electrode materials for electrical double-layer capacitor
		4.2 Graphene with conducting additives as composite material for flexible supercapacitor devices
		4.3 Graphene with metal oxides as composite material for flexible supercapacitor devices
	5. Concluding remarks and future perspectives
	References
12 - Present status of biomass-derived carbon-based composites for supercapacitor application
	1. Introduction
	2. Fundamentals of supercapacitor: an overview
	3. Carbon materials for supercapacitor electrodes
		3.1 Activated carbon
		3.2 Porous carbon
		3.3 Carbon aerogel/carbon hydrogel
		3.4 Graphene
		3.5 Carbon nanotube
		3.6 Fullerene
	4. Synthesis of biomass-derived porous carbon electrodes
		4.1 Activation
		4.2 Carbonization
			4.2.1 Pyrolysis
			4.2.2 Hydrothermal carbonization
			4.2.3 Ionothermal carbonization
			4.2.4 Molten salt carbonization
	5. Types of biomass precursors
		5.1 Plant biomass
		5.2 Animal-based biomass
		5.3 Fruit-based biomass
		5.4 Microorganism-based biomass
	6. Structural specification of biomass-derived porous carbon
		6.1 Sphere-like structure
		6.2 Tube-like structure
		6.3 Fiber-like structure
		6.4 Sheet-like structure
	7. Natural polymer-derived porous carbon
		7.1 Cellulose-derived porous carbon
		7.2 Alginate-derived porous carbon
		7.3 Lignin-derived porous carbon
		7.4 Starch-derived porous carbon
		7.5 Chitin-derived porous carbon
		7.6 Gelatin-derived porous carbon
	8. Application of biomass-derived porous carbons in supercapacitor technology
	9. Conclusion and prospective
	Acknowledgments
	References
13 - 2D materials-based flexible supercapacitors for high energy storage devices
	1. Introduction
	2. Supercapacitors
	3. Cell design
	4. Three-electrode system
	5. Two-electrode system
	6. Calculations
		6.1 Cyclic voltammetry
	7. Galvanostatic charge-discharge
	8. Energy and power densities
	9. Two-dimensional materials
	10. Synthesis method
	11. Graphene-based flexible energy storage devices
	12. Transition metal dichalcogenide-based flexible energy storage devices
	13. Hybrid-based flexible energy storage devices
	14. Recent developments
	15. Future opportunities and challenges
	16. Summary
	Acknowledgments
	References
14 - Nanostructured transition metal sulfide/selenide anodes for high-performance sodium-ion batteries
	1. Introduction
	2. Working principle of sodium-ion batteries
	3. Active components of sodium-ion batteries
		3.1 Cathodes
		3.2 Electrolytes used in sodium-ion batteries
		3.3 Anodes
		3.4 Transition metal oxides
		3.5 Metal sulfides
		3.6 Transition metal selenides
	4. Summary
	Acknowledgments
	References
15 - Emerging anode and cathode functional materials for lithium-ion batteries
	1. Introduction
	2. Electrochemistry of lithium-ion batteries
	3. Anode
		3.1 Graphene-based materials
		3.2 Silicon
		3.3 Silicon-based composites
		3.4 Transition metals-based materials
		3.5 Transition metal dichalcogenides
		3.6 Tin oxide materials
		3.7 Other functional materials
	4. Cathode
		4.1 LiFePO4 and its nanocomposites
		4.2 Lithium cobalt oxide
		4.3 Lithium manganese oxide
		4.4 Lithium-rich NCM materials
		4.5 3D graphene/organic nanocomposite
		4.6 Other nanomaterials
	5. Conclusions
	List of abbreviations
	Acknowledgments
	References
16 - Transition metal-based nitrides for energy applications
	1. Introduction
	2. Mechanism involved in electrochemical water splitting and a short preview
		2.1 Overpotential (η) and Tafel slope
		2.2 Stability
	3. Why transition metal nitrides are important in electrochemical water splitting?
	4. Metal nitrides in electrochemical water splitting
		4.1 Monometallic nitrides for electrocatalytic water splitting
		4.2 Bimetallic nitrides for electrocatalytic water splitting
		4.3 Trimetallic nitrides for electrocatalytic water splitting
	5. Conclusion
	Acknowledgments
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
Back Cover




نظرات کاربران